B.E. End-semester (1st Semester CST, EE, ETC, IT) Examination, 2012

PHYSICS (PH - 1201)

Full Marks: 70 Time: 3 hrs.

Answer any five questions:

- 1.a) How can you represent Gauss's law and Ampere's law in their integral form? Explain the inconsistency in Ampere's law. How did Maxwell remove this inconsistency?
 - b) Write down Maxwell's equations in free space. Obtain the following forms of wave equations corresponding to electric field and magnetic fields in free space

$$abla^2 \vec{E} = \mu_0 \, \epsilon_0 \, \frac{\partial^2 \vec{E}}{\partial t^2} \, \text{and} \, \nabla^2 \vec{H} = \mu_0 \, \epsilon_0 \, \frac{\partial^2 \vec{H}}{\partial t^2}$$

[(2+2+3)+(4+3)]

- 2.a) What is meant by Fraunhofer diffraction? Derive an expression for the intensity distribution of Fraunhofer double slit diffraction. Give a plot of the intensity distribution.
 - b) What is a diffraction grating? Define the resolving power of a grating.
 - c) Calculate the possible order of spectra with a plane transmission grating having 18000 lines per inch when light of wavelength 4500A is used.
 - d) Write a short note on the polarization of light wave.

[6+3+2+3]

- 3.a) What is stimulated emission? Find the relation between Einstein's A and B coefficients and hence calculate the ratio of the rate of spontaneous emission and stimulated emission for a given pair of energy levels. What is meant by optical pumping?
 - b) Describe the working principle of Helium-Neon Laser.
 - c) Establish the relation between numerical aperture and acceptance angle in a step index optical fibre.

[(2+4)+(1+3)+4]

4.a) Distinguish between a crystalline and a non-crystalline material.

Write down the specification of a tetragonal and hexagonal unit cell.

- b) i) The lattice parameters of a crystal are 1.2A, 1.8A and 2A along three axes where a plane intercepts at lengths 2.4A, 1.8A and 6A along their respective crystal axes. Find the Miller intercepts of the planes.
 - ii) Draw the planes of a cubic crystal where Miller indices are (110), (111).
 - iii) The distance between consecutive (111) planes in a cubic crystal is 2A. Determine the lattice parameters.
- c) Find out the coordination number and packing fraction for a bcc structure.
- d) Why X-rays are used to analyse the crystal structure? A beam of X rays of wavelength 0.637A is incident on a crystal at a glancing angle 8°35' when first order Bragg's reflection occurs. Find out the glancing angle for the third order reflection.

[(1+2)+(2+2+1)+(1+2)+3]

- 5.a) Write down the postulates of Einstein's special theory of relativity.
 - b) Derive the Lorentz transformation relations. State clearly the postulates used in obtaining the relation. Write down the inverse Lorentz transformation equations. Under what condition Lorentz transformation equation?
 - c) Show that if the proper volume of a cube is L_0^3 , then $L_0^3(1-\beta^2)^{\frac{1}{2}}$ is the apparent volume as viewed from a reference frame moving with uniform velocity v parallel to an edge of the cube. $(\beta = \frac{v}{c})$.
- d) What will be the period of the 'seconds' pendulum (of time period = 25) measured by an observer moving at a speed of 0.8c?

$$[2+(6+1+1)+2+2]$$

6.a) State de Broglie hypothesis. Show that the de Broglie wavelength of a particle of rest mass m_o and kinetic energy K is given by $\lambda = \frac{hc}{\sqrt{K(K + 2m_oc^2)}}$, where h is Plank's constant and

c is the speed of light in vacuum.

- b) What is "ultraviolet catastrophe" in a black body radiation? Write down Plank radiation distribution formula and obtain its limiting form in the small and large frequency limit.
- c) What is Compton effect? Obtain an expression for the Compton shift in wavelength. Does it depend on the incident wavelength?

$$[(2+2)+(1+4)+5]$$

<u>or</u>

- a) Write down Schrodinger's time-dependent wave equation. Obtain stationary state Schrodinger equation stating the condition needed.
- b) Find the energy eigenvalues and normalized wave functions of a particle inside a one dimensional infinite potential well of width L. Obtain the probability of finding the particle in between 0.5L and 0.6L.

[4+(7+3)]