BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR B.E. 5TH SEMESTER (MET) FINAL EXAMINATIONS, NOVEMBER-DECEMBER 2012

MATERIALS PROCESSING (MT 702)

Full Marks: 70

Time: 3 hrs

Use separate answer script for answering of each half.

First Half (Answer ALL Questions)

1. Explain the importance of *friction* in rolling operation and derive the expression of maximum possible draft in rolling.

OR

Prove that the maximum reduction in area in drawing of wire in a single pass is 63%.

[5]

- 2. Answer the following questions (any THREE):
 - (i) (a) Discuss distribution of roll pressure along the arc length of contact and how this distribution gets modified by the application of front and/or back tension in the plane of rolling.
 - (b) Draw and level typical profile of a wire drawing die and mention specific functions.
 - (ii) Stating the relevant assumptions, derive the expressions of forging pressure in plane strain forging of a slab for sliding friction as well as sticking friction conditions by slab-analysis method.
 - (iii) Compare and contrast between:
 - (a) Direct extrusion and Indirect extrusion
 - (b) Open-die forging and Closed-die forging
 - (iv) Write short technical note on:
 - (a) Redundant work
 - (b) Rolling mill control
 - (v) Discuss the following defects, their causes and remedies with sketches:
 - (a) Alligatoring
 - (b) Fir-tree cracking

Second Half (Answer ALL questions)

3. Answer any TWO questions:

- (i) (a) Justify the use of J_2 as the suitable parameter for establishment of yield criteria, and hence, describe the Von Mises' yield criteria.
 - (b) A structural member is to be designed with the safety factor of 1.8. The state of stress is given as σ_x = 80 MPa σ_y = 120 MPa and σ_z = 180 MPa. Obtain the desired yield strength of the material.
- (ii) (a) Explain the conditions necessary for dynamic recovery and recrystallisation during hot working.
 - (b) A block of metal (2 0mm \times 20 mm \times 120 mm) with σ_0 = 50 MPa and μ = 0.25 is pressed between the die to a size of 10 mm \times 40 mm \times 120 mm. Determine the pressure at the centre and at 5 mm out of the centre.
- (iii) (a) Determine the largest possible reduction for a 10 mm stainless steel wire having $\sigma_o = 1300\epsilon^{0.30}$ MPa, and $\mu = 0.25$ with the die having the die angle of 12°.
 - (b) What is spring back? How to measure the same.
- (iv) (a) Compare between local and diffused necking.
 - (b) Justify the effect of strain hardening exponent and strain rate sensitivity on necking.

[(5+5)x2=20]

4. Write short technical note on (any THREE):

- (i) Keller-Goodwin Diagram
- (ii) Necking limits
- (iii) Drawability limit
- (iv) Stretcher strain
- (v) Hodograph