B.E. (Met.) Part-III 6th Semester Examination, April 2013

HEAT TREATMENT TECHNOLOGY (MT-605)

Time: 3 hours Full Marks: 70

Answer question No. 1 and any FIVE from the rest
Marks in the margin indicate full marks
All parts of a question must be written at one place
Give neat sketches wherever necessary

- 1. Answer the following (No marks awarded for incomplete / partly correct answer) (any Ten): [2x10]
 - (i) Name one austenite and one ferrite stabilizing element.
 - (ii) With the help of Iron-Cementite phase diagram identify the minimum temperature at which complete liquid phase can be formed in plain-C steel and write the corresponding wt.% C.
 - (iii) Calculate the wt.% of ferrite in a steel containing 0.8 wt.% C at room temperature and at eutectoid temperature.
 - (iv) How do Cr and Co affect the nose of the TTT diagram?
 - (v) What is critical cooling rate?
 - (vi) Define severity of quench.
 - (vii) A heat treatment furnace is overloaded with many large components kept in stack and components are quench hardened from austenizing temperature. What is the most likely defect to be observed?
 - (viii) What is the microstructure of grey cast iron?
 - (ix) Which carburising process shows better control over carburised layer thickness in steels?
 - (x) What is the maximum solid solubility of Copper in Aluminium?
 - (xi) Identify a hardening process which does not require a separate quenching medium.
 - (xii) Write the chemical composition of 18:4:1 grade of high speed steels.
 - (xiii) How the eutectoid temperature and composition of steels are affected by Ni and Cr?
 - (xiv) Write the composition of Hadfield Manganese steel and its phases at room temperature.
- 2. (a) What are the experimental parameters to be maintained during Jominy end quench test? How do you quantitatively determine the hardenability value of a particular steel sample by this method?
 - (b) A 0.35% plain-C steel and a 0.35%C 1.0% Mn steel are water quenched from austenizing temperature. Which steel will show higher hardenability? Briefly discuss the reasons.
- 3. (a) Briefly explain the various stages of heat removal during quenching.
 - (b) Name the factors which control the quenching characteristics.
 - (c) What are the advantages of synthetic quenchants over other quenching media?

[3+3+4]

- 4. (a) What is the importance of carburization treatment of steels?
 - (b) What is the necessity of post carburization heat treatment?
 - (c) What is the necessity of inspection of heat-treated products? [2+3+5]
- 5. Briefly describe the black heart process of malleabilization of white cast iron.

- 6. (a) Which series of Al-base alloys are heat treatable in nature?
 - (b) Explain the precipitation hardening characteristics of Al 4.5wt.% Cu alloy.
 - (c) Identify the applications and corresponding heat treatment schedule of Ti-6Al-4V alloy.

[1+5+4]

7. Write technical notes on (any Two):

 $[5 \times 2]$

- (a) Patenting
- (b) Austempered ductile iron
- (c) Secondary hardening of steel
- 8. Write a typical composition of the followings, corresponding heat treatment schedule and expected properties (any Three): [3½ x3]
 - (i) Ferritic stainless steel
 - (ii) Standard Ni-hard cast iron
 - (iii) Maraging steel
 - (iv) Transformer steel
 - (v) Ball bearing steel