B.E. (MET) Part III 6th Semester Examination, 2012

Subject: NON-FERROUS METALLURGY [MT 603]

Use separate answer script for each half

Group A

Answer all questions

1. Say if the following statements are true (T) or false (F). Write nothing else.

 $[10 \times 1]$

- a. In polymetallic sea nodules, the highest concentration is of Manganese
- b. A "booster reaction" for metallothermic reduction of halides or oxides of reactive metals, helps both kinetically as well as thermodynamically.
- c. In aluminium electrolytic cell the "Anode effect" occurs above 2% alumina in the electrolyte.
- d. The same electrolyte composition is employed in electrolysis and electro refining of aluminium.
- e. Secondary metals refer to metals that are less important.
- f. Ferrochrome melts containing high levels of carbon can be decarburized by oxygen injection.
- g. All fertile isotopes of nuclear metals can undergo fission reaction.
- h. The imperial smelting process handles calcines of mixed lead and zinc sulphides.
- i. Zinc cannot be produced by electrolysis of acidic aqueous solution because zinc displace hydrogen for being more reactive.
- j. A bipolar cell means a cell with intermediate electrodes where opposite faces serve as positive and negative electrodes.
- 2. Discuss briefly for any five why the following statements are true

[5x5]

- a. In india's nuclear energy program, the Thorium deposits are of most vital importance.
- b. Some oxides can be chlorinated only by indirect chlorination.
- c. Extraction of Copper by mattle smelting practically needs no reductant.
- d. There is series-parallel connection in the aluminium electrolytic cell.
- e. The increase in GDP is not necessarily the best index of a country's progress.
- f. In Pidgeon's process for Magnesium production dolomite will be preferred to Magnesite.
- g. Ferro alloying elements are generally produced as ferro alloys and not in elemental form.
- h. Scrap iron is added in lead blast furnace for higher lead recovery.
- i. During bio leaching, bacterial colonies are not destroyed, rather they flourish.

Group B

Attempt any three. Two marks are reserved for neatness.

1.	 Justify the following: a. Titanium implants can be made bioactive. b. Most of the Titanium alloys cannot be age hardened except Boron and Copper c. Copper can prevent bio-fouling very efficiently d. Zn is added in Mg-Al alloys to improve strength. e. Dezincification is not considered as a problem for Red alpha (α) brass. 	2+2+2+3=11
2.	 Write short note on the following: a. different heat treatments for different classes of Ti alloys b. special features of Copper and its alloys that make it indispensible in the modern world. c. Thixo casting and squeeze casting of aluminium alloys. 	4+3+4=11
3.	 a. State the purpose of RE additions in Mg alloys. b. Classify alloy additions in Titanium based on their ability to influence the stability of different phases. d. Titanium is a candidate material for the first wall of magnetically confined fusion reactors – give reason. 	3+4+4=11
4.	 a. For Mg alloys deformation is only restricted to {1000} plane and <112⁻0> direction – comment b. How pore formation during welding of Mg alloys can be avoided? c. Comment on the microstructure control for Mg alloys through texture. 	3+4+4=11
5.	State the controlling factors for the following: a. microstructural features that controls mechanical properties of Aluminium alloys b. metallurgical factors that influence fatigue and creep properties of aluminium alloys c. factors that affect melting of aluminium alloys	4+4+3=11