B. E. (MET) 3rd Semester Examination, December 2013

Subject: METALLURGICAL THERMODYNAMICS AND KINETICS Code: MT 302

Time: Three hours Full marks: 70

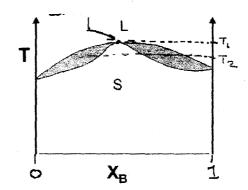
Use separate answer scripts for different sections

Section A Answer all questions

- 1. Say whether the following statements are True (T) or False (F). Write nothing else
 - i. For a normal reaction activation energy (E) cannot be zero
 - ii. For a first order reaction α increases by 50 percent at equal intervals
 - iii. Jander's eq. i.e. $[1-(1-\alpha)^{1/3}] = kt$ is a special case of the Ginstling Brownstein eq.
 - $1-2/3\alpha (1-\alpha)^{2/3} = kt$
 - iv. For nth order of reaction the rate constant equals the reaction rate at the very beginning.
 - v. A reduced time plot can be used to evaluate the activation energy.
 - vi. During a reaction the temperature varies at a steady rate from 50 k to 1050 k. The average reaction rate will correspond to 500 k.
 - vii. A cementation reaction: $Fe + Cu^{2+} = Cu + Fe^{2+}$ involves four reaction steps
 - viii. A catalyst increases reaction rate by spreading on a surface to increase the surface area.
 - ix. The α -t plot for a reaction during steady increase in temperature must look like a Johnson-Mehl equation plot, but is not identical.
 - x. In DTA one obtains two successive endothermic peaks. On subsequent cooling the peaks will be reversed always.

 $10 \times 1 = 10$

2. Discuss the basis of your answer for any five questions given in Q.1


 $5 \times 2 = 10$

- 3. Answer any three of the following questions.
 - i. How does one evaluate the value when the X-T plot follows a Johnson-Mehl eq.?
 - ii. Calculate values of α for the reduced time plot for the parabolic equation for $t/t_{0.5}$ values of 0.4, 0.6, 1.2, and 1.4.
 - iii. A solid cube is dissolving in a liquid and the reaction rate is controlled by solid surface area. Derive the kinetic equation.
 - iv. How does one obtain the basic kinetic equation when the temperature increases at a steady rate?
 - v. Show how the TG, DTG and DTA plots differ between those for dolomite (CaCO₃.MgCO₃) and an equimolar mixture of CaCO₃ and MgCO₃.
 - vi. Discuss any two methods of evaluating the activation energy from a α -t plot for a reaction.

Section B

Question No. 4 is compulsory. Answer any two from the rest.

4. a. Draw free energy vs composition curves for the following system at T₁ and T₂ temperatures

- b. Discuss the significance of intermediate compound in a phase diagram
- c. Interaction parameter (Ω) plays an important role in calculating the free energy change for a regular binary solution justify.
 - d. How can you construct phase diagram from free energy composition diagram?
 - e. With the help of free energy vs temperature diagram explain the driving force for solidification.

 (5×3)

- 5. a. Define excess function. How does excess free energy related with change of enthalpy for regular solution?
 - b. The partial molar free energy of Zinc in liquid Cu-Zn alloys at 1027°C can be represented as:

$$G_{Zn}^{XS}$$
 (cal/mole) = -5150 $(1 - X_{Zn})^2$

Calculate the activity of copper at 1027°C in an equiatomic solution.

(2+3) + 5

- 6. a. Explain thermodynamic system with a suitable example.
 - b. State combined first and second law of thermodynamics.
 - c. Internal energy is a function of temperature only justify.
 - d. Relate heat capacity and enthalpy.

 (2.5×4)

- 7. a. A spontaneous process can be made reversible comment
 - b. Express the concept of equilibrium in the light of entropy and free energy
- c. When a system undergoes a process at a constant pressure, does the entropy change depend on temperature?
 - d. Discuss the importance of Helmholtz's free energy.
- 8. a. How does third law of thermodynamics differs from other two laws?
 - b. The definition of entropy from Nernst and Max Planck are different comment.
 - c. Derive the statistical expression for entropy.
- d. Substances usually expand with increase in temperature at constant pressure. Is C_p usually larger than C_v ?