B. E. (MET) 3rd Semester Examination, December 2012

Subject: METALLURGICAL THERMODYNAMICS AND KINETICS Code: MT 302

Time: Three hours Full marks: 70

Section A

Answer all questions

- 1. Say if these statements are true (T) or False (F). WRITE NOHING ELSE.
- a. Rate of exothermic reactions increase with increase in temperature.
- b. A catalyst increases reaction rate by decreasing the activation energy.
- c. When the reaction temperature oscillates uniformly around a mean, then the average temperature corresponding to the average rate constant is above this mean.
- d. In a series of steps in a reaction the Rate Controlling Step is the most efficient.
- e. The enthalpy of mixing two components A and B is identical for ideal and regular solutions.
- f. When the progress of a reaction is described by a degree of reaction then the dimensions of rate and rate constant are the same.
- g. During electrolysis if there is a limiting current then it implies that diffusion of cations to the cathode is the rate controlling step.
- h. If, during an isothermal reaction, the reaction rate decreases then it implies decrease in the rate constant also.
- i. Favourable kinetics can make a reaction even if it is thermodynamically not feasible.
- j. A reduced time plot can be used to derive the activation energy.
- k. CaC**o**3 can decompose below the decomposition temperature.
- 1. The entropy of a system may not be zero even at zero degree Kelvin.
- m. For any reaction, the activation energy can be known only if the kinetic equation is known.
- n. If there is a growing layer of oxide on a metal plate undergoing oxidation then the reaction rate must gradually decrease.
- o. The efficiency of an engine operating between a heat source at temperature T_1 and a heat sink at temperature T_2 ($T_1 > T_2$) increases when (T_1, T_2) increases.

 15×1=15

2. Explain why the following statements are True. ANSWER ANY FIVE BRIEFLY

- a. If the reaction temperature rises steadily during a reaction then the α -t plot assumes a S shape.
- b. Entropy of mixing A with B is the same of ideal and regular solutions.
- c. TG and DTA plots for the compound CaCO₃, MgCO₃ are different from those of an equimolar mixture of the carbonates.
- d. During a phase transformation through nucleation and growth, nuclei are not stable if the size is less than a critical size.
- e. The differential form of the Johnson Mehl equation is not a true kinetic equation but the integral form is.
- f. The reaction rate increase more significantly with increase in temperature when the activation energy is higher.
- g. The rate equation for a reaction governed by the same rate controlling step changes with the shape of a particle.
- h. A first order reaction is better characterized by the 'Half Life' than the time for total reaction.

 $3 \times 5 = 15$

3. Answer ANY TWO questions

- a. Show that if the Reduced Time Plot (i.e. x versus t/t0.5 plot) is derived from the following equation x2 = 0.25 (t/t0.5) then it points towards a particular case of diffusion through product layer as rate controlling.
- b. Steel is being undergoing through the following reaction. $(O_2) + [S] = (S_2) + [o]$ where () and [] denote, respectively the slag and metal phase. Draw the concentration profiles for the different species as they are transferred to and from the slag / metal interface when [S] transfer is the rate controlling step.
- c. Derive the kinetic equation for the reaction of a flat surface and of a spherical solid when the reaction is controlled by the surface area \cdot 2.5 \times 2=5

Section B

Question No. 4 is compulsory. Answer any two from the rest.

- 4. a. Derive the expression for free energy and composition for ideal and regular solution. Discuss the role of interaction parameter in this relationship.
- b. Draw the free energy vs composition curves for the following phase diagram at three temperatures (horizontal lines).

c. Define congruent melting. Draw a phase diagram showing congruent melting with associated free energy composition curve at that point.

[5+5+5]

5. Prove the following

a. For a binary solution: $\Delta S_{mix} = -R(X_A \ln X_A + X_B \ln X_B)$ where ΔS_{mix} is entropy of mixing, X_A and X_B are the mole fractions of A and B atoms respectively.

b.

$$\left(\frac{\partial G}{\partial T}\right)_{P} = -S \qquad \left(\frac{\partial G}{\partial P}\right)_{T} = V \qquad \left(\frac{\partial H}{\partial P}\right)_{S} = V \qquad \left(\frac{\partial H}{\partial S}\right)_{P} = T$$
[5+5]

- 6. a. Discuss how the concept of Enthalpy has been evolved in Thermodynamics.
- b. Differentiate constant Volume and constant pressure heat capacity.
- c. Discuss the effect of pressure in free energy.

[3+4+3]

- 7. a. Define thermodynamic systems.
- b. Discuss the effect of pressure in free energy.
- c. For a spontaneous process entropy of the system should increase while free energy should decrease justify.