## BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR B.E. 7TH SEMESTER (MinE) FINAL EXAMINATION, 2012 Elective I (Geostatistics) (MN 706/1)

Full Marks: 70

Time: 3 hrs

Answer any FIVE questions

Marks are indicated on the right margin of the questions

Students are allowed to use the charts and figures of Auxiliary functions and normal distribution

- 1. a) What are the causes of Nugget effect? How is it related with the size of sample?
  - b) In practical Geostatistics how would you adjust lag distance and direction of orientation?
  - c) Why semivariogram is considered as more powerful tool compared to covariogram to measure the relationship between sample values at different spatial locations?
  - d) Establish the relation between semivariogram and covariogram.  $[3\frac{1}{2} \times 4 = 14]$
- 2. Show that

i) 
$$\sigma_w(h) = \overline{\sigma}(w; w_{-h})$$
 and

ii) 
$$\gamma_w(h) = \overline{\gamma}(w; w_{+h}) - \overline{\gamma}(w; w)$$

where,  $\sigma_{w}(h)$  =regularized covariogram

 $\overline{\sigma}(w; w_{+h})$  =average value of  $\sigma(z'z'')$  where z' and z'' are any two points in w(z) and w(z+h) respectively

 $\gamma_w(h)$  = regularized semivariogram

 $\bar{\gamma}(w; w_{+h})$  =average value of the point semivariogram  $\gamma(z'z'')$  where z'z'' is the vector distance between any two points z' in sample w(z) and z'' in sample w(z+h)

 $\overline{\gamma}(w;w)$  =average value of  $\gamma(z'z'')$  where z' and z'' are any two points in the same sample w.

[10+4=14]

3. Enumerate Kriging error in terms of average semivariogram by taking two samples when mean grade is unknown, then generalize the relations. Show in a Matrix form also.

[14]

- 4. a) Define dispersion variance.
  - b) What do you mean by 'variance additivity relationship'?
  - c) A rectangular section of a bedded deposit has been sampled as shown in the following figure. The size of the section is 500 m  $\times$  500 m, and 11 samples have been taken. Calculate the variance of the samples w in W<sub>1</sub>, where W<sub>1</sub> is of 500m $\times$ 500m, 250m $\times$ 500m and 250m $\times$ 250m.

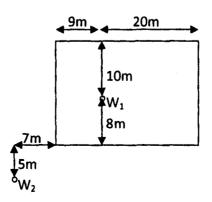
| $A_1$          | A <sub>2</sub>     | $A_3$          |
|----------------|--------------------|----------------|
| o11            | 019 023            |                |
| o10            | B <sub>2</sub> 016 | B <sub>3</sub> |
| 011            |                    |                |
| 014            | o22                |                |
|                | o20                |                |
| 09             | 013                |                |
|                |                    |                |
| C <sub>1</sub> | C <sub>2</sub>     | C <sub>3</sub> |

d) Show graphically the variance area relationship.

[1+2+7+4=14]

- 5. a) In a deposit of 10 million tones, it is found that the average grade of Cu is 0.30% and the cut off grade is 0.40% and the variance is 0.01(%)<sup>2</sup>, find out the percentage and quantity of ore above cut-off grade in the deposit.
  - b) Consider an iron ore deposit which is known to follow a normal distribution with a mean of 48%Fe and a standard deviation of 5%Fe. This distribution has been established on samples small enough to be called 'points'. The deposit follows a point semi-variogram model which is spherical with a range of influence of 400 ft and sill 25 (%)<sup>2</sup>. If the cut-off grade is 44%Fe, how much of the deposit will be ore and what will be average grade of that ore?
  - c) In the above deposit if the block dimension is 100ft by 50ft what will be the standard deviation? [4+7+3=14]
- 6. Consider a point semivariogram  $\gamma(h)$  linear for  $h\le 2$  and reaching a sill C=1 at h=2. There is no nugget effect. Consider a square block W of size  $3\times 3$  and point sample  $w_1$  and  $w_2$  located in the centre and corner of W respectively.
  - a) Find out estimation variances  $\sigma_e^2(w_1 \text{ to W})$ ,  $\sigma_e^2(w_2 \text{ to W})$   $\sigma_e^2(w_s \text{ to W})$ , where  $w_s = \{w_1, w_2\}$ . Given,  $\overline{\gamma}$  (W;W)=0.683;  $\overline{\gamma}$  (w<sub>1</sub>;W)=0.536;  $\overline{\gamma}$  (w<sub>2</sub>;W)=0.882.
  - b) Find also the estimation variances of the same parameters if the point semivariogram follows a spherical model with same sill and range as above. [(2+2+3)×2=14]
- 7. Consider a disseminated nickel deposit in the late stages of development. On a particular underground level, the block of size 50m by 40 m needs to be estimated. This panel has been developed along two sides and the information available consists of (i) the average grade along the

50 m drive,  $g_1$  and (ii) the average grade along the 40m drive,  $g_2$ . If the average of these two grades are used to estimate the value inside the panel what will be the estimation variance? The deposit follows the spherical model of semivariogram with a range of influence of 60m and a sill of 0.75(%)<sup>2</sup>.


[14]

8. With the help of point Kriging method, find out the elevation of water table at an unknown point 'p' knowing the elevation at three specified points 1, 2 and 3. The following chart shows the three known wells and their elevation in meters. The unknown elevation point is labeled p.

| Well | x-coordinate | y-coordinate | Water Table Elevation (m) |
|------|--------------|--------------|---------------------------|
| 1    | 1            | 2            | 190                       |
| 2    | 4            | 3            | 110                       |
| 3    | 5            | 4            | 140                       |
| р    | 3            | 2            | unknown                   |

Use a linear semivariogram y(h)=4h.

9. Consider a mineral deposit where the semivariogram follows an exponential model with sill  $C=0.04(\%)^2$  and range a =10m. Calculate the Kriging estimator and Kriging variance for the block W (rectangular area) in the following figure with the help of the point samples  $w_1$  (0.6%) and  $w_2$ (1.0%).



[14]