B.E. (Mechanical) Part - III, 6th Semester Final Examination, 2013

Manufacturing Technology (ME - 604)

Full marks: 70

Time: 3 hour

Use separate Answer script for each half Attempt any three questions from each half All the questions carry equal marks

First Half

- 1. Explain the basic differences between grinding and other conventional machining (a) operations State the advantages of grinding as compared to machining by cutting tools with (b)
 - defined geometry. Name the different types of abrasives used in grinding wheels. State their (c)
 - characteristics and applications.
- Name the different types of bond materials used in grinding wheels. State their 2. characteristics and applications. (b)
 - What do you understand by the term Grade of a grinding wheel? How grinding wheels are classified on the basis of grade? (c)
 - Explain the reason behind the selection of hard grinding wheel for grinding a soft material and vice-versa.
- 3. What are the selection criteria of grinding wheel for thread grinding? (a)
 - Discuss how variation of wheel speed and work speed affects grinding operation. (b)
 - Discuss on the effects of feeds on the grinding operation. (c)
- 4. (a) How grinding machines are classified based on surface generated.
 - With neat sketches explain the working principles of centreless external cylindrical (b) grinding. (c)
 - Write a short note on surface grinding operations.
- 5. Write short notes on any four:
 - (i) Structure of grinding wheel (ii) Marking system for grinding wheels, (iii) Truing and dressing of grinding wheels (iv) Balancing of grinding wheel (v) Broach materials

SECOND HALF

[Answer any THREE questions]

- 6. (a) Draw the schematic diagram of a 'Column and knee' type milling machine and label its various components.
 - (b) Name the different methods of indexing.
 - (c) It is required to cut 30 teeth on a spur gear blank. The numbers of holes available on the index plates are as follows:

as ionov			,	·	
15	16	17	18	19	20
13	22	27	29	31	33
21	23	21		17	49
37	39	41	43	47	49
	15 21 37	15 16 21 23	15 16 17 21 23 27	15 16 17 18 21 23 27 29	21 23 21 42 47

Name the indexing method that can be adopted and calculate the crank movement.

- 7. (a) Name the different types of milling operations.
 - (b) With neat sketches describe the up milling and down milling methods.
 - (c) Why down milling operation is not performed on old machines?
- 8. (a) State the relationship between (i) feed per tooth (sz), (ii) feed per revolution (sr) and (iii) feed per minute (s_m) in milling operation.
 - (b) Show that in plain milling operation, the approach length is given by: $L_o = \sqrt{t(D-t)}$; where, 't' is the depth of cut and 'D' is the cutter diameter.
 - (c) The following data were obtained during slab milling of a mild steel block: Cutter diameter = 70 mm, number of teeth = 12, cutting speed = 25 m/ min, feed = 0.08 mm/ tooth, length of the job = 250 mm, depth of cut = 2 mm. Calculate (i) feed per minute and (ii) machining time.
 - 9. (a) Write down the advantages of Metal working processes over other manufacturing processes.
 - (b) Enumerate the different types of defects which can be observed in rolled products. With the help of necessary sketches explain any two of them.
 - 10. (a) Draw a neat sketch of closed-die forging process.
 - (b) Enumerate the characteristics of closed-die forging process.
 - (c) State and explain the different forging defects.