BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR B.E. 5TH SEMESTER (MET) FINAL EXAMINATIONS, 2011

MATERIALS PROCESSING (MT 702)

Full Marks: 70 Time: 3 hrs

Use SINGLE answer script for answering of all questions.

Answer any SEVEN questions.

- **1.** (a) Explain the importance of *friction* in rolling operation and derive the expression of maximum possible draft in rolling.
 - (b) Discuss distribution of roll pressure along the arc length of contact and how this distribution gets modified by the application of front and/or back tension in the plane of rolling.

[5+5]

- **2.** (a) Discuss the design consideration of *flash* in close die forging. How flash cracking can be avoided?
 - (b) What are the requisite characteristics of a lubricant to be used in materials processing. Name few lubricants used in hot and cold working processes.

[5+5]

- A SAE 1040 steel at the forging temperature has a yield stress of 40 MPa. A right-circular cylinder of 75 mm high and 25 mm diameter is to be upset to half height between flat dies.
 - (a) If the coefficient of friction is 0.4, what is the maximum force required for the upsetting?
 - (b) How much extra force is required over what would be needed if no friction were present?
 - (c) If it takes 3 s to produce the forging and the efficient is 40%, how much power must be available in order to do the job?

[4+3+3]

- 4. Discuss the following defects, their causes and remedies with sketches (any TWO):
 - (a) Wavy edge
 - (b) Alligatoring
 - (c) Cold shut
 - (d) Stretcher strain

[5x2]

- **5.** Write short technical note on (any TWO):
 - (a) Workability limit diagram

- (b) Rolling-mill control
- (c) Seamless tube production
- (d) Hydrostatic extrusion process

[5x2]

- Differentiate between (any TWO): 6.
 - Open die forging and close die forging
 - (b) Direct extrusion and indirect extrusion
 - Cluster rolling mill and planetary rolling mill (c)

[5x2]

- (a) What do you understand by the second invariant of stress deviator? Justify its use in 7. the yield criteria.
 - (b) The stresses acting on a cubic element having the yield stress of 600MPa are as following: σ_x = 180 MPa, σ_v = 110 MPa, σ_z = -300 MPa and τ_{xy} = 40 MPa.

Determine the safety factor.

8.

9.

[5+5]

- Compare the yield locus for plane stress as obtained from Von Mises and Tresca (a) criteria.
- Establish that the two criteria are equivalent under plane strain condition. (b)

[5+5]

- (a) Enumerate the factors those contribute to the efficiency factor of the extrusion process.
- Determine the time average mean strain rate for extrusion of billet from the diameter (b) D_b to D_a using the die with semicone angle of 45°. Calculate the strain rate for $D_b = 180 \text{ mm} \text{ and } D_a = 40 \text{ mm}.$

[5+5]

- 10. (a) Obtain the draw stress for a wire reduced from the area A_a to A_b.
 - Obtain the mean stress for 40% reduction in cross section of a wire for which the (b) flow stress is given by $\sigma_0 = 1400 \, \epsilon^{0.25}$. [5+5]

- 11. Show the distribution of stresses in the section of a drawn cup. (a)
 - Justify- while the limit of drawing a wire is determined by the work hardening (b) behavior of material, the same is not true for drawing a cup.

[5+5]