B.E.(All Branches) 2nd Semester Final Examination , April 2012

Mathematics-II (MA-201)

Time: 3 hours

(Use separate answerscript for each half)

Full Marks: 70

FIRST HALF

(Answer Question No.1 and any TWO from the rest.)

1. Answer any three questions.

(3x5)

- (a) Reduce the following matrix to its normal form and hence find its rank in the two cases when
 - (i) a=-1 and (ii) $a \neq -1$:

$$A = \left[\begin{array}{ccc} a & -1 & -1 \\ -1 & a & -1 \\ -1 & -1 & a \\ 1 & 1 & 1 \end{array} \right].$$

(b) Find the characteristic equation of the matrix

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Write down the corresponding matrix equation satisfied by A . Hence find A^{-1} and A^{9} .

- (c) State and prove the First Mean-Value Theorem of Integral Calculus.
- (d) Define vector space. Prove that if W_1 and W_2 be any two sub-spaces of a vector space V over the field F, then $W_1 \cap W_2$ is also a sub-space of V over F. Give an example in support of the theorem.
- 2. (a)Apply First Mean Value Theorem of Integral Calculus to prove that if f(x) (> 0) is continuous in [a,b] then

$$\int_a^b \{f(x)\}^2 dx = \text{(b-a) } f(c)f(d) \text{ , where c ,d } \epsilon \text{ [a,b]}.$$

- (b) (i) Define eigen value and eigen vector of a square matrix.
 - (ii) If λ (\neq 0) is an eigen value of a non-singular matrix A, show that λ^{-1} is an eigenvalue of A^{-1} .
 - (iii) If λ_1 , λ_2 , λ_3 be the eigen values of the matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{3x3}$, show that λ_1^2 , λ_2^2 , λ_3^2 are the eigen values of the matrix A^2 .
 - (iii) Prove that the matrices A and $P^{-1}AP$ have the same eigen values.

(w) Prove that the eigen vectors corresponding to two distinct eigen values of a real symmetric matrix are orthogonal.

3. (a) Test for convergence the following improper integrals:

(i)
$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{x^n} dx$$
, (ii) $\int_1^{\infty} e^{-x} \frac{\sin x}{x^2} dx$.

(b) Investigate for which values of λ , μ the system of equations

$$x + v + z = 7$$
, $x + 2v + 3z = 10$, $x + 2v + \lambda z = \mu$

have (i) no solution, (ii) unique solution, (iii) an infinite number of solutions.

4. (a) Prove that

$$2^{2m-1}\Gamma(m)\Gamma(m+\frac{1}{2})=\sqrt{\pi}\,\Gamma(2m), m>0.$$

OR

Prove that

$$\int_0^\infty e^{-x^4} dx \times \int_0^\infty e^{-x^4} x^2 dx = \frac{\pi}{8\sqrt{2}}.$$

(b) Show that the vectors (1,2,1), (2,1,0), (1,-1,2) form a basis of the vector space $V_3(F) = \{(x,y,z): x,y,z\in F\}$ over the field F of real numbers.

(c) If A be a skew-symmetric matrix and (1+A) be a non-singular matrix, then show that

$$B = (I - A)(I + A)^{-1}$$
 is orthogonal.

Answer question no. 5 and any two from the rest

- 5. Answer any three: $(3 \times 5 = 15)$
 - a) Solve the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = x^2$.
 - b) Determine the particular integral of $\frac{d^2y}{dx^2} + 4y = x\cos x$.
 - c) Solve $\frac{d^2y}{dx^2} = xe^x$.
 - d) If f(t) is a periodic function of period a, then show that $L\{f(t)\} = \frac{1}{1-e^{-ap}} \int\limits_0^a f(t) e^{-pt} dt$, where $L\{f(t)\}$ is the Laplace transform of f(t) with parameter p.
 - e) Determine the Laplace transform of $f(t) = e^{3t} \sin^2 5t$.
- 6. a) Solve the differential equation $x^2 \frac{d^2y}{dx^2} 2y = \frac{1}{x}$.
- b) An electric circuit consists of an inductance L , capacitance C and an e.m.f E . Find the charge q and the current i when $E=E_0\cos wt$ and the initial conditions are

 $q = q_0$ and $i = i_0$ at t = 0; i, q satisfying the equations

$$\frac{d^2q}{dt^2} + \frac{q}{LC} = \frac{E_0}{L}\cos wt, i = \frac{dq}{dt}.$$
 (5+5)

7. a) Determine the series solution of the differential equation

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0 \text{ in the neighborhood of } x = 0.$$

b) Determine the particular integral of
$$\frac{d^2y}{dx^2} - 4y = e^{2x}$$
. (7+3)

- 8. a) Show that $\int_{-1}^{1} P_n(x) P_m(x) dx = 0$, when $n \neq m$, where $P_l(x)$ is the Legendre polynomial of degree l.
 - b) Determine the Laplace transform of f(t), where

$$f(t) = \frac{t}{T}, \text{ when } 0 < t < T$$

$$= 1, \text{ when } t > T$$
(5+5)

- 9. a) Determine the Laplace inverse of $\frac{1}{p^2(p^2-4)}$ by using convolution theorem, where p is parameter of Laplace transform.
 - b) If $L\{f(t)\} = \bar{f}(p)$, then prove that $L\{f(t-a)H(t-a)\} = e^{-ap}\bar{f}(p)$, where $\bar{f}(p)$ is the Laplace transform of f(t) with parameter p and H(t) is the Heaviside function defined by

$$H(t-a) = 1 \quad for \ t > a$$
$$= 0 \quad for \ t < a$$

Using the above result compute inverse Laplace transform of
$$\frac{pe^{-2p}}{p^2+1}$$
. (5+5)