B.E. (IT) Part-Ill 6th Semester Examination, 2010 Digital Signal Processing (IT-604)

Time: $\mathbf{3}$ hours
Full Marks : 70

Answer gnи FIVE questions.

Find z-Transform with the ROC for each of the following sequences,
a) $\mathbf{J r}(\mathbf{f f})=\underset{2}{(\mathbf{i})-\mid /(\mathbf{w})+(-\mid)_{4}^{\prime \prime} \mathbf{i} /(/ \mathbf{f})}$
b) $x(n)=(\mathbf{w}+1)(\mathbf{n}+2)(* \mathbf{i}+3) a^{m} \quad$ forn >0 3!
c) $y(n)=x(n)+3 x(n-1)+2 x(n-2) ;$ find $H(z)$
2. a) Find the magipitude/phase response of the following signal $h[n]$,

0

$$
\mathrm{N}-
$$

n
b) What is an all-pass system? A system is represented by the following equation. State whether the system is all pass system.

$$
H(z)=A
$$

$$
7+7=14
$$

3. a) Draw the parallel form structure of the following system. State the computational complexity of the design. Is your design an optimized one?

$$
/ /(\mathbf{z})=\begin{aligned}
& \mathbf{0 . 4 4 z ^ { \prime \prime }}+\mathbf{+ 0 . 3 6 2} \mathrm{z}^{\prime \prime 2}+\mathbf{0 . 0 2 z ^ { \prime 3 }} \\
& \mathbf{1}+\mathbf{0 . 4} \mathrm{z}^{-1}+\mathbf{0 . 1 8} 8^{-2}{ }^{-2}-\mathbf{0 . 2} \mathrm{z}^{-3}
\end{aligned}
$$

b) Draw signal flow graph of a second order digital IIR filter along with the blockdiagram realization of the filter.

$$
8+6=14
$$

4. a) Realize the following linear phase FIR system,

38
 3

b) The k parameters for an all-zero lattice structure are given as. $\mathrm{k} 1=2 / 7, \mathrm{k} 2=1 / 8$. Design the lattice structure. Find its order and transfer function.
c) Discuss how finite register length a fleets IIR and FIR filter design.

$$
5+4+5-14
$$

5. a) Describe digital IIR filter design by 'Bilinear transformation' method.
b) What is frequency warping?
c) Convert the analog filler with system function $/ 7(, \mathrm{v})=\mathrm{s}^{+}+* \mathbf{V} \mathrm{~L}^{\text {tm }}$
digital IIR filter by means of the bilinear transformation. The digital filter is to have a resonant frequency of $\mathrm{w}_{\mathrm{t}}-\mathbf{T I} / 2$.

$$
8+2+4=14
$$

6. a) Perform N-point DFT of the sequence $\boldsymbol{x}(\boldsymbol{n})=\boldsymbol{a}^{\prime \prime} ; \boldsymbol{0}<\boldsymbol{a}<\boldsymbol{I}$.
b) State computational complexity of N-point DFT.
c) Perform radix-2 DITFFT algorithm on a discrete 8 -point sequence and draw the butterfly diagram for the FFT. Also find computational complexity in each stage of the design?

$$
3+2+9=14
$$

7. a) Perform circular convolution of the two given sequences, $x(n)=\{1,2,2.1\}$ and $h(n)=\{2,1,1,2\}$.
b) Describe the CORD1C algorithm for realizing the angle 3(T. You are supplied with the look-up table for arc-tangent values with maximum shift sequence $\mathrm{i}=15$.
