Analysis and Design of Algorithms

Paper code: IT – 506 Time – 2 hours

Branch: IT Full Marks – 35

 3×5

10

Answer Question 1 and any two from the rest

- 1. Answer the following questions.
 - a. Given two arrays of numbers $a_1, ..., a_n$ and $b_1, ..., b_n$ where each number is 0 or 1, find the time and space complexity of the fastest algorithm to find the largest span

(i, j) such that $a_i + a_{i+1} + ... + a_j = b_i + b_{i+1} + ... + b_j$, or report that there is no such span.

span.

b. What is the time complexity of the following recursive function? int DoSomething (int n)

if (n<=2) return 1; else return(DoSomething(floor (sqrt(n)))+n);

- c. Two alternative packages A and B are available for processing a database having 10^k records. Package A requires $0.0001 \, n^2$ time units whereas package B requires $10 \, n \, log_{10} \, n$ time units to process n records. Find the smallest value of k for which package B will be preferred over A.
- d. In quick sort, for sorting n elements, the $(n/4)^{th}$ smallest element is selected as pivot using an O(n) time algorithm. Find the worst case time complexity of the quick sort.
- e. Write a short note on NP Completeness.
- 2. Design an algorithm for breadth-first search (BFS), and analyze the algorithm.
- 3. Write the Kruskal's algorithm for finding the minimum spanning tree of a connected undirected graph. Show the execution of the algorithm with the help of an example graph having at least 7 nodes.
- 4. Write and explain the Bellman-Ford algorithm for finding the single-source shortest paths. Find the time complexity of the algorithm.