Bengal Engineering and Science University

Final Semester Examination of BE (IT) 3rd Semester, 2011

DISCRETE MATHEMATICS (IT 303)

Full Marks: 35 Time: 2 hours

(Answer any five questions)

1. a) What is Proposition?

1+3+3=7

- b) Construct the truth tables for the following statements:
- i) $(p \to p) \lor (p \to \bar{p})$
- ii) $(p \lor \bar{q}) \to \bar{p}$
- 2. a) Evaluate the sum using generating function:

4+3=7

$$1^2 + 2^2 + 3^2 + \cdots + r^2$$

b) Determine the discrete numeric function corresponding to the following generating function:

$$A(z)=\frac{1}{1-4z^2}$$

3. a) Solve the following recurrence relation:

5+2=7

$$a_r - 7a_{r-1} + 10a_{r-2} = 3^r$$
, given that $a_0 = 0$ and $a_1 = 3$.

- b) What is equivalence relation?
- 4. a) Let ρ be an equivalence relation on a set S and a, $b \in S$. Then prove that cl(a) = cl(b) if and only if $a \rho b$. 2+5=7.
- b) Let S be the set of all positive divisors of 30. Verify whether the binary relation $\leq on S$ is Poset, where $a \leq b$ means "a is a divisor of b", for a, b in S. Draw the covering diagram of the given relation if the relation is Poset.
- a) Let (G, o) be a group. Prove that a non-empty subset H of G forms a subgroups of (G, o) if and only if $a \in H, b \in H \Rightarrow a \circ b^{-1} \in H$.
 - b) If (G, o) be a group in which $(a \circ b)^2 = a^2 \circ b^2$ for all $a, b \in G$, prove that the group is abelian.
 - 6. a) Show that the following mapping f is injective but not surjective

$$f: \mathbb{Z} \to \mathbb{Q}$$
 defined by $f(x) = 2^x, x \in \mathbb{Z}$.

3+4=7.

b) Show that the following mapping f is a bijection. Determine f^{-1} .

$$f: \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = 2x + 3, x \in \mathbb{R}$.