## B.E. IT Part IV 7th Sem Exam., 2012

Subject: Broadband Communications

Code: IT-703

Full marks: 70 Time: 3 hrs

Answer any three questions from each group. All questions carry equal marks. Four marks Are reserved for neatness.

## Gr. A

1. What is telemetry, tracking and command system of a satellite? How telemetry data are sent to a satellite? Describe with a block diagram the tracking function of a controlling earth station.

3+3+5

2. What is TDMA? How loop back synchronization is achieved when a new earth station joins a network of earth stations? Explain the TDMA frame and burst structure in relation to satellite communications.

2+3+3+3

3. Explain the functioning of a 6/4 and 14/11 Ghz. Bent pipe transponder in satellite communications. What is M for N redundancy used in transponders?

4+4+3

4. What is DAMA? Explain the functioning of a DBS-TV receiver with necessary block diagrams.

4+7

5. What are earth stations in connections with satellite communications? Explain the functioning of the transmitter and receiver used in the earth stations for satellite communications.

3+4+4

## GR. B

1. Explain the cellular concepts of Mobile communications system. What is frequency reuse? Explain the Okumura model used in signal prediction in urban areas?

3+3+5

2. What are the factors which influence small – scale fading? Explain the phenomenon of flat fading and frequency selective fading due to multipath time delay spread.

5+3+3

3. Explain the concepts of microscopic and macroscopic diversity related to small scale and large scale fading respectively. Explain with necessary diagrams, the concepts of feedback diversity.

3+3+5

4. How the user services are categorized in a GSM system? What is a Subscriber Identity Module? Explain with necessary block diagrams The GSM system architecture.

3+2+6

5. Explain with necessary block diagrams the fibre optic communication principle. Explain with necessary diagrams the structure of a single mode step index fibre. What are multimode graded index fibres and what are their Bandwidths?

4+4+3

6. Explain with necessary diagrams, the functioning of avalanche photodiodes. Explain the functioning of a LED for binary digital transmission. Explain with block diagrams, a simple optical receiver circuit for detection purpose.

3+4+4