BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR BE, PART-III 6TH SEMESTER (IT) FINAL EXAMINATION, MAY 2012 Digital Signal Processing (IT – 604)

Full Marks = 70

Time: 3 hrs.

(Answer any FIVE questions)

1. (a) Find z-Transform with the ROC for each of the following sequences,

(i)
$$x(n) = (\frac{1}{2})^n u(n) + (-\frac{1}{4})^n u(n); n > 0$$

- (ii) $x(n) = \sin \omega_0 n$ for n>0
- (b) Define ROC of z-transform of a discrete sequence x(n).

$$(4+7)+3=14$$

2. (a) Find inverse z-Transform of the following:

(i)
$$x(z) = \frac{z(1-e^{-T})}{(z-1)(z-e^{-T})}$$

- (b) Check for linearity and time invariance,
 - (i) $F[x(n)] = n[x(n)]^2$

(ii)
$$Y(n) = \alpha + \sum_{k=-4}^{4} x(n-k)$$

$$4 + (5 + 5) = 14$$

- 3. (a) Find magnitude and phase response of $\delta(n) = -\pi$ and plot the curves.
 - (b) Show that the following system is stable and LTI system. Plot the pole-zero diagrams for it.

$$H(z) = \frac{1+4z^{-1}}{1-\frac{1}{4}z^{-1}-\frac{3}{8}z^{-2}}$$

(c) Explain all pole, stable and discrete time system.

$$4 + 6 + 4 = 14$$

4. (a) Draw direct form II structure and transposed form II structure of the following system. Calculate hardware complexity of each design.

$$H(z) = \frac{0.44 z^{-1} + 0.362 z^{-2} + 0.02 z^{-3}}{1 + 0.4 z^{-1} + 0.18 z^{-2} - 0.2 z^{-3}}$$

- (b) What are the properties of Linear phase FIR systems?
- (c) Draw the linear phase FIR filter diagram for the following system

$$H(z) = (1+1/2 z^{-1} + z^{-2})(1+1/4z^{-1} + z^{-2})$$

$$6 + 4 + 4 = 14$$

- 5. (a) Describe FIR filter design using rectangular window function. Show that the magnitude and phase response of the window function satisfies FIR filter properties.
 - (b) Describe the disadvantages of rectangular window technique and a method of rectification.
 - (c) What are the advantages of bilinear transformation over other IIR filter design techniques?

$$6 + 4 + 4 = 14$$

6. (a)Frequency response of a LP filter is,

$$H_{d}(e^{j\omega}) = \begin{cases} e^{-j3\omega}; -3\pi/4 \le \omega \le 3\pi/4 \\ 0; 3\pi/4 < |\omega| \le \pi \end{cases}$$

Design FIR filter with M=7 using Hamming Window function.

(b) Explain the suffling of data and bit reversal in DITFFT.

$$8 + 6 = 14$$

7. (a) All parts use the signal x[n] shown below

Let $X(e^{jw})$ be the DFT of x[n]. R(k) if defined as follows,

$$R[k] = X\left(e^{j\omega}\right)|_{\omega = \frac{2\pi k}{4}}, \qquad 0 \le k \le 3$$

Find the signal r[n] which is the four-point inverse DFT of R[k].

(b) Find circular convolution of $x(n) = \{1,2,2,1\}$ and $h(n) = \{2,1,1,2\}$.