BE 3rd Semester Examination, 2012 Discrete Mathematics and Graph Theory IT – 303

Information Technology Department

	Full Marks: 70 Time: 3 Hours		
Answer any five questions.			
1.	 a) State the required properties of axioms. b) What is known as partially quantified predicate? c) State the principle of strong induction. d) What is a total order? e) Draw the Hasse diagram for the set, S={1,2,3,4,5} over the relation ≤ and show that it is a parorder. 	[3] [2] [3] [2] tial [4]	
_			
2.	a) Prove that a simple graph with n vertices and k components can have at most (n-k)(n-k+1)/2 of the ring sum of G, and G.	[6]	
	b) Find the ring sum of G_1 and G_2 .	[4]	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	G_1		
	c) Define i) Euler graph ii) Hamiltonian circuit.	[2+2]	
3.	 a) Prove that in a n-vertex binary tree, there are (n+1)/2 leaf nodes. b) Prove that a connected planar graph with n vertices and e edges has e - n + 2 regions. c) Prove that K_{3,3} is nonplanar. d) What is a self-dual graph? Explain with an example. 	[3] [4] [4] [3]	
4.	a) Prove that the vertices of any planar graph can be properly colored with five colors.b) Define i) point covering number ii) line independence number.c) What is a regular digraph? Explain with an example.d) Explain what you understand by point critical graph.	[5] [4] [3] [2]	
5.	 a) What is generalized pigeon-hole principle? If there are 45 persons in a room, then at least how of them will share their month of birth? Explain. b) Prove that (Z_n, X) is not a group. [operation X stands for multiplication] c) Define commutative ring. Give an example of a commutative ring. 	v many [2+3] [4] [5]	
6.	a) Show that permutation with the operation composition (a permutation applied after another) is abelian group. b) What is a Galois Field? Explain the operations in GF(2). c) Let the alphabet, Σ , contains a set of symbols, and Σ^* is the set of all strings containing the symbols. Give a recursive definition of Σ^* . d) Give the recursive definition of the function $f(n) = 2n+1$, $n=0,1,2,\ldots$	[4] [4]	