B.E (ETC) 7th Semester Final Examination, 2013 Subject: VLSI Logic Design (ET 706/3)

Time: 3 hours Full marks: 70

Use separate Answer script for each half First Half Attempt ALL questions

- 1. Write down the CORDIC algorithm for both vectoring and rotation operation. Perform VLSI design for a serial CORDIC processor for both operations. Explain also the various subblocks used in this design. (10)
- 2. Write notes on
 - (i) Four bit parallel unsigned binary divider
 - (ii) Built in self test in VLSI

(10)

- 3. (a) Explain with the help of flow chart the various steps in VLSI design flow.
 - (b) Design an additive array multiply module to implement following function

$$P=AXB + C + D$$

$$(A=a_3 a_2 a_1 a_0, B=b_1 b_0, C=c_3 c_2 c_1 c_0, D=d_1 d_0)$$
(15)

Second Half Attempt ALL questions

- 4. Choose the correct alternative
 - A) Threshold voltage (Vt) of MOSFET
 - i) Increases with increased doping and decreases with decreased oxide thickness
 - ii) Increases with increased doping and increases with decreased oxide thickness
 - iii) Decreases with increased doping and decreases with decreased oxide thickness
 - iv) Decreases with increased doping and increases with decreased oxide thickness

- C) In constant voltage scaling
- i) Power dissipation increases and power density decreases
- ii) Power dissipation decreases and power density increases
- iii) Power dissipation decreases and power density remain same
- iv) Power dissipation remain same and power density decreases

- D) Threshold voltage (Vt) of MOSFET
 - i) Decreases for short channel effects and increases for narrow channel effects
 - ii) Increases for short channel effects and decreases for narrow channel effects
 - iii) Decreases for short channel effects and decreases for narrow channel effects
 - iv) Increases for short channel effects and increases for narrow channel effects
- E) For a CMOS Inverter

- i) $K_{R1}=4.0, K_{R2}=1.0, K_{R3}=0.25$
- ii) $K_{R1}=1.0, K_{R2}=0.25, K_{R3}=4.0$
- iii) $K_{R1}=0.25, K_{R2}=1.0, K_{R3}=4.0$: Where $K_R=K_n/K_p$

5x1=5

- 5. a) Amongst a CMOS NAND and NOR gate which one is better and why?
 - b) Discuss the voltage transfer characteristics of CMOS inverter with emphasis on region of operation of n-MOS and p-MOS.
 - c) What is the advantage of transmission gate logic over pass transistor logic?

5x3=15

- 6. a) What is drain induced barrier lowering?
 - b) How the problem of conventional dynamic circuit is circumvented by Domino logic?
 - c) Discuss the purpose of weak pull up transistors in Domino CMOS logic