Bengal Engineering & Science University, Shibpur

B.E. Part IV (ETC), 7th Semester Final Examination, 2013-14 Digital Signal Processing (ET 704)

Full Marks: 70 Time: 3 hours

Use separate answer scripts for each half

FIRST HALF

Answer question no. 1 and any two from the rest

1. a) Consider the system illustrated in Figure 1. The output of a linear time invariant (LTI) system with an impulse response $h[n] = (1/4)^n u[n+10]$ is multiplied by a unit step function u[n] to yield the output of the overall system. Answer each of the following and briefly justify your answer.

Figure 1

- (i) Is the overall system LTI?
- (ii) Is the overall system causal?
- b) Is it feasible to plot a close replica of the magnitude spectrum of a length-4 discrete-time sequence using its 4-point DFT samples? Justify your answer
- c) Determine whether each of the following signals is periodic. If the signal is periodic, state the period.

i)
$$x[n] = \exp(j3\pi n/4)$$
, (ii) $x[n] = [\sin(\pi n/4)]/(\pi n)$

5+6+4

2. a) Determine the discrete-time Fourier transform of the following sequence. Plot its magnitude spectrum

$$x[n] = a^n u(n), |a| < 1$$

b) If DFT of an N-length sequence x[n] $(0 \le n \le N-1)$ is given by the sequence X[k], then prove that

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] exp(j2\pi kn/N), \qquad 0 \le n \le N-1$$

3. a) An LTI discrete system is characterized by the following system function

$$H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$$

Specify the ROC of H(z) and determine the impulse function for the following conditions

- (i) the system is stable (ii) the system is causal
- b) Prove that an LTI causal system is BIBO stable if and only if poles of its system function lie inside the unit circle.

5+5

- 4. a) Explain the method of determining linear convolution of two-discrete time finite-length sequences using DFT
 - b) Determine the DFT of the sequence $x[n] = \{1, 2, 4, -2\}$

5+5

5. Prove that minimum number of (complex) multiplication operations required to perform 8-point DFT of a causal sequence (of length 8) is 12. Show necessary mathematical steps and draw a neat signal flow graph.

10

SECOND HALF

Answer question no. 5 and any three from the rest

6. Determine the system function of the filter shown in Fig. A.

Fig. A

- 7. Consider a causal LTI system with system function $H(z) = \frac{1-a^{-1}z^{-1}}{1-az^{-1}}$, where 'a' is real.
- (a) Write the difference equation that relates the input and output of this system.
- (b) For what range of values of 'a' is this system stable?
- (c) For a=0.5, plot the pole-zero diagram and shade the ROC in z-plane.
- (d) Find the impulse response for this system.
- (e) Show that this system is an all-pass system. Also specify the value of the constant.

10

8. Show that the impulse response h(n) of an FIR filter of length (2M + 1) may be obtained from its frequency samples $H_k \ \forall k = 0,1,2,....M$ in accordance with the following equation:

$$h(n) = \frac{1}{2M+1} \left[H_0 + 2 \sum_{k=1}^{M} H_k \cos \left\{ \frac{2\pi k(n-M)}{2M+1} \right\} \right], 0 \le n \le 2M$$

10

9. Design a Butterworth filter using Impulse Invariance Transformation for the following specifications:

$$0.8 \le |H(e^{j\omega})| \le 1$$
 for $0 \le \omega \le 0.2\pi$
 $|H(e^{j\omega})| \le 0.2$ for $0.6\pi \le \omega \le \pi$

Assume T=1 second.

10

10. Design a single-pole low-pass digital filter with a 3-dB bandwidth of 0.2π . Hence realize the filter using hardware blocks.

10

11. Realize the system described by the difference equation: y(n) = -0.1y(n-1) + 0.72y(n-2) + 0.7x(n) - 0.252x(n-2) in cascade and parallel form.

----X-----X

10