BENGAL ENGINEERING & SCIENCE UNIVERSITY, SHIBPUR B.E. (ETCE) Part-II 3rd Semester Final Examination, 2012-13

NETWORK THEORY (ET-302)

Time: 3 Hours Full Marks: 70

Answer Question no.1 and any FOUR from the rest

(Extra Answers will be discarded)

1.		Pick up the correct answer(s) (any Six).						1× 6 =	6	
	(a)	a) The number of loop equations required to completely analyze a network consindependent branches and five nodes including the reference node shall be (i) 5 (ii) 4 (iii) 3 (iv) 6							10	
	(b)	 b) The impedance of a capacitive react (i) linearly with frequency (iii) parabolically with frequency 			(ii) hyperbolically with frequency					
	(c) Power dissipated in a pure capaci (i) zero (ii) maxim			•				y) none of these		
	d)	The product (i) ohm	RC has dimer (ii) farad) second	(iv) h	erz			
	(e)	•	•	resonant circu	•		$\frac{R}{2\pi L}$			
	(f) Condition for reciprocity of network (pick up wrong relation) (i) $z_{12} = z_{21}$ (ii) $y_{12} = y_{21}$ (iii) $h_{12} = -h_{21}$ (iv) AD + BC = 1							D + BC = 1		
	(g)	(g) Branches removed form a graph in f (i) links (ii) cotree			orming a tree are called (iii) twigs			ords		
	(h)	(h) Laplace transform of 't' is (i) 1 (ii) s (iii) 1/s (iv) 1/s ²								
2.	(a) Define poles and zeros of a network function. Draw the pole-zero diagram of the network function $N(s) = \frac{(s+1)^2(s+5)}{(s+2)(s^2+6s+13)}$									
	(b)	(b) The driving point impedance of a one-port network is given by $Z(s) = \frac{2s(s^2+2)(s^2+4)}{(s^2+1)(s^2+3)}$ Determine the first Foster form of the network showing all the calculations in details.								
	(c) The driving point impedance of a network is given by $Z(s) = \frac{(s+2)(s+4)}{s+3}$								<u>)</u>	
		By inspection find the type and number of elements in the synthesis of the network for above function. State the criteria that you have used here in reaching your results.								

4+9+3=16

- 3. (a) Derive the condition for maximum power transfer from a source to a load when the load resistance and reactance are varied independently. Show all the detailed steps of derivative while deriving. From the condition write the statement of maximum power transfer to a load.
 - (b) For the circuit shown in Fig.3(b), what load impedance Z_L absorbs maximum average power and what is this power?

9+7=16

- 4. (a) Derive with necessary diagrams the equivalence between a voltage source V_S with series impedance Z_V and a current source I_S in parallel with impedance Z_I .
 - (b) With suitable diagrams explain voltage source shifting technique. In which kind of circuit configuration is this method used conveniently?
 - (c) Find the equivalent voltage generator and current generator separately across the terminals A and B for the network given in Fig.4(c). Estimate the current in each case that would flow if a load of 5 Ω is connected across the terminals A and B of the network. Show all the calculations and necessary diagrams.

5+5+6=16

- 5. (a) A pulse voltage of magnitude 10 volts and extending from 0 to 2 sec is applied at time t = 0 to a series R-L circuit consisting of resistance $R = 4\Omega$ and inductor L = 2 Henry. Assume zero current through the inductor L before application of the voltage pulse. By using Laplace transformation find current i(t), voltages $v_R(t)$ and $v_L(t)$. Neatly plot each of them superimposing with the pulse. Show the construction of i(t) waveform by drawing individual waveforms of all the terms of itself.
 - (b) When a load impedance Z_L is connected across port-2 of a two-port network, find the expression for the input impedance in terms of z-parameters and the load impedance. From this show that when $Z_L = \infty$, the input impedance = z_{11} and for $Z_L = 0$, the input impedance = $1/y_{11}$.

11+5=16

6. (a) Draw a series RLC resonant circuit. Define its bandwidth (BW). Why is it also called 3-dB BW and half-power BW? Explain with the help of its response curve and necessary calculations. Derive that for a series RLC circuit the bandwidth is given by $\Delta \omega = R/L$

(b) Write the formula of the Laplace transform of any function that repeats itself. Fig. 6(b) shows a square wave v(t) of amplitude unity and periodic time 2a. Derive (i) without using that formula and (ii) using that formula that its Laplace transform is $F(s) = \frac{1}{a} \cdot \frac{1 - e^{-as}}{1 + e^{-as}}$

10+6=16

7. (a) Define h-parameters. Find the y-parameters (from the definition) for the given resistive network of Fig.7(a) containing a controlled voltage.

(b) For the circuit shown in Fig.7(b), find the complete expression for the current when the switch K is closed at t = 0.

11+5=16

- 8. (a) Define the terms: (i) Graph, (ii) Tree.
 - (b) For the given resistive network [Fig.8(b)] draw a graph and 12 trees. Select a tree and write a tie-set schedule and equilibrium equations on the current basis. Solve these equations and calculate the branch currents and branch voltages. Given that $R1=5\Omega$, $R2=5\Omega$, $R3=R4=R6=10\Omega$ and $R5=2\Omega$.

3+13=16