B.E. (ETC) Part-II 4th Semester Examination, 2010 Digital Electronics
 (ET-402)

Time: 3 hours
Full Marks : 70

Answer gnu FIVE questions.

1. a) Derive the truth table of a binary full subtractor and write down the related logic expressions. Realize the same using only $2: 1$ MUX as a basic building block.
b) Design a variable right shifter which can make a signed shifting of amount 0 to 7 bit of its 8 bit input data. The circuit should be combinatorial only.
2. Design an additive array multiply module using full adder blocks only which can realize the following expression

$$
\mathrm{P}=\mathrm{A} \times \mathrm{B}+\mathrm{C}+\mathrm{D}
$$

where A is 4 bit ($a_{3}, a_{2}, a_{11} a_{0}$), B is 2 bit ($b_{1,} b_{0}$), C is 4 bit ($\left.c j, c_{2}, c_{12}, C o\right)$ and D is 2 bit (di, d_{0}) binary numbers.
3. a) Using a neat circuit diagram exp'an the rderation of J-K flip-flop.
b) Design an arbitrary counter using D flip-tlop and logic gates which will generate $0,5,3,4,7$ and repeats thereafter.
4. a) Describe with necessary circuit diagram the operation of a 4-bit controlled adder/subtractor using two's complement number system. Explain with example how overflow condition is detected in this design.
b) Design a pipelined fractional multiplier which scales its 16 bit input, DIN, as the following relationship

DOUT $=0.707 \times$ DIN
5. Explain the operation of a 4-bit unsigned parallel divider with necessary diagram. How this unsigned divider can be converted to signed divider.
6. a) Design a 8:1 MUX using pass transistor logic. How a Boolean Function Unit can be realized using pass transistor logic.
b) Describe with necessary circuit diagram the operation of integrated circuit DTL NAND gate. Derive the expression for its Fan-out.
7. Write notes on :
a) NOR gate realization using complementary MOS logic and it's stick diagram.
b) Mealy machine,
c) N -bit Serial Adder.

