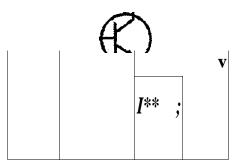
B.E. (EE) Part-II 4th Semester Examination, 2010 Solid State Devices and Circuits-I (EE-404)

Time : 3 hours

Full Marks: 70

<u>Use separate answerscript for each half.</u> <u>Answer SIX questions, taking THREE from each half.</u> Two marks are reserved for neatness in each half.


FIRST HALF

- 1. a) Draw the Ebers-Moll model for a p-n-p transistor.
 - b) Explain the output characteristic of a CB p-n-p transistor in the amplifying region with the help of the Ebers-Moll model.
 - c) If both the junction is sufficiently reverse biased then prove that the emitter and collector current are given by

$$|-a,a_n|$$
 and $lr = l-a,a_n$ [3+4+41]

- 2. a) Define CE h-parameters.
 - b) How do you measure experimentally the parameter hj_{-i} ?
 - c) Find *hfo* in terms of CE h-parameters. [4+2+51]
- 3. a) Find the small signal r.m.s. output voltage V_o as shown in Fig. -1 due to low frequency excitation signal V_i 10 mV r.m.s. The CE h-parameters values are $h_{ic} = 1,100$ $h_a = 2.5 \times 10 \sim h_f = 50$ and $= 24pAIV^*$ The resistance values in the circuit are *, = 100K, $R_2 = \langle 0K, R_i = 1$ $*_o^{-1/K}$ and = 1 K. The reactance values of the capacitances at the operating frequency can be considered to be zero.

- b) Find the bias stability factor S (for variation of $/_{co}$) for the same circuit assuming $P \ll /i/_{c}$. [7+41]
- 4. a) Define g_{m} for a JFET.
 - b) Find the expression of g_{m} from the Shockley's equation.
 - c) Find the voltage gain and output resistance for a CS amplifier with source resistance. [3+2+61]
- 5. a) Explain common mode signal and difference signal.
 - b) What is CMRR?
 - c) Explain the operation of an emitter coupled BJT difference amplifier and find the CMRR of the amplifier. J2+2+71

SECOND HALF

- 6. a) Define an operational amplifier (Op. AmpVOA). With the help of an equivalent circuit, represent an OA. What is an ideal OA? Discuss the specification of an ideal OA.
 - b) Compare between actual ground point and virtual ground point, with the help of an amplifier circuit using OA, show these two ground points.
 - c) Draw a 3-point adder circuit using OA. Show the summing junction and derive the input-output relation. In this circuit, if the feedback resistor is replaced by a capacitor, what will be the analytical expression of the output? Name the circuit. [4+2+5]
- 7. a) With the help of a circuit diagram and analytical steps, discuss the operation of a differential input differential output circuit using OA. Suggest the single resistor gain control facility in it.
 - b) What is a zero crossing detector (ZCD)? Discuss the transfer characteristics of the circuit and describe the output waveform from the circuit if the input to the circuit is a 2 V peak to peak sinusoidal ac signal. [6+5]
- 8. a) Draw the circuit of a TTL inverter circuit with totempole active pull up circuit and describe its operation,
 - b) What is a CMOS inverting gate circuit? Show the internal circuit of a noninverting gate in a CMOS logic family. (6+51

(EE-404)

- (3) -

9. a) Prove that:

AB + BC + CA = AB + BC + CA.

Use truthtable, Venn diagram and K-map for proof.

b) Minimise the following function analytically and using K-map Y = Im(1, 2, 3, 4, 5, 6)

Draw the minimized circuit using NAND-NAND configuration. (5+61

[5Kx2]

10. Write short notes on <u>anv two</u> :

- a) Compare a passive-RC Integrator to its active counterpart using O.A,
- b) Analog Regenerative Comparator and its application in an Astable Multivibrator.
- c) Realisation of a Full Adder circuit using two-Half Adders and a gate.
- d) Digital word comparator using Exclusive-OR gates.