BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR

B.E. (EE) 8th Semester Final Examination 2012

Subject: Switchgear and Protective Relaying

Paper / Code No: EE – 802

Time: 3 Hours

Branch: Electrical Engineering
Full Marks: 70

(i)Answer any SIX questions taking THREE from each half (ii)TWO marks are reserved for neatness in each half

FIRST HALF 1.(a) Justify the use of Numerical relay in view of the essential qualities of relay.

- (b) Explain the operation of Anti-Pumping scheme. State its purpose and exact area of application.
 - [5+6]
- 2.(a)State the origin of earth fault. Why is an additional neutral impedance added? When an arcing ground occurs? Draw a scheme to protect a line against an earth fault and over current
 - condition. [2+1+1+2]

 (b) Name different types of over current relays with their characteristics and curve. State also their application. [5]
- 3.(a)Name different types of protection used for protecting a power transformer. Explain with connection diagram, Restricted Earth fault protection of Power transform. [3+3]
 - (b) State the effect of over fluxing on transformer and suggest the protection of transformer against over fluxing.

 [2.5+2.5]
- 4.(a)State the process involved in digital protection. State with the help of block diagram, process involve in signal conditioning. [3+3]
 (b)Obtain the theory of Two- input comparator. State the theory of Two input co-incidence
- comparator. [3+2]

 5.(a) Show that a bi-metal overload relay can be used as single phasing preventer. [5]

 (b) Give a complete scheme of protection of H.T induction motor. Draw the relay co-ordination

curves. Explain the protection against single phasing.

SECOND HALF

[2+2+2]

- 6.(a) Derive the characteristic equation of a percentage differential relay and draw its characteristic curve. [5]
- (b) Explain how does a percentage differential relay overcome the drawbacks of a simple differential relay.
- (c) How do you adjust the slope of a percentage differential relay? [1]
 (d) Higher slopes are required in a case where there is a lot of mismatch between the CTs at the
 - two ends. Explain. [2]

7.(a) Can a ge	enerator be allowed to run when its excitation is lost? Justify your answer.	[6]
	loss of excitation difficult to detect by monitoring the field current? ta protective system to detect loss of excitation.	[1] [4]
(b) What ar (c) Suggest remedia	re the probable causes of unbalanced current flow through the stator—windings? re the possible ill effects of unbalanced current flow? to a protective system to detect a severe unbalanced condition and to provide necell actions. The penerator be allowed to run when its prime mover is lost? Justify your answer.	[3]
	the basic principle of distance relaying? How do under reach and over reach aff ance of distance relays?	ect the
	le reactance type distance relay is used to protect a line having resistance and rea and 2.0 ohm per km respectively. The distribted capacitance of the line may be red.	ictance
The ref	flected critical reactance of the relay is set at 50 ohm.	
	culate the length of the line protected by this unit.	[1]
	te line is compensated by a series capacitor of 20 ohm placed at the middle, calculated to the line will be protected?	
	hat length of the line will be protected? suming that an arcing short circuit having an impedance of impedance of (2 + j0)	[2]
	an occur any where along the line section, find the maximum length that can be) (IIIII
	rotected by this unit.	[2]
10.(a)What ar	re the advantages of Carrier Aided Distance Protection over ordinary Distance	
Protecti		[3]
· / •	the principle of operation of Carrier Transfer type of Carrier Aided Distance	rea
Protecti	ion.	[8]