BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR

B.E. (EE) 7th Semester Final Examination December 2012

Subject: Advanced Programming for Electrical Engineering

Paper / Code No: (EE -706/2)

Branch: Electrical Engineering

Time: 2 Hours

Full Marks: 35

- i) Answer any four (4) questions taking two(2) from each half
- Marks reserved for neatness in each half: 1.5(one and a half) ii)

FIRST HALF

- 1. (i) Explain the following terms:
 - (a) Fill-in of a sparse matrix, (b) Optimal Ordering of a sparse coefficient matrix,
 - (c) Speed-up of a parallel process

(3)

- (i) Explain how eight numbers can be arranged in ascending order by 4 parallel processors using odd-even transportation sorting algorithm. (5)
- 2. (i) What are the advantages of storing a large matrix with a very high degree of sparsity in compact form? Justify your answer. (2)
 - (ii) Matrix A is stored in compact form using modified coordinate method as follows:

ValA =		•						
	2	1	7	4	6	3	1	8
ColA =								•
	1	3	5	2	4	3	2	5
RowstA =				*******				
	1	4	6	7				

Matrix B is stored in compact form using modified coordinate method as follows:

ValB =							
	2	3	5	4	7	6	8
ColB =							
	2	3	3	4	2	3	5
RowstB =							
	1	3	5	6]		

Cal	أسما	late:
1 2		iaie:

(i)	degree of	sparsity	of matrix	A and	matrix B
(.)	405.000.	Sparsity	OI IIIGGI IZZ	, , ,,,,,	III WUI III L

(ii) elements of matrix C = A + B

(iii) elements of matrix D = A - B

(iv) degree of sparsity of C and D

(1+2+2+1)

3. (i) Define (a) dominant eigen value and (b) dominant eigen vector of a matrix

(2x1)

(ii) Calculate the dominant eigen value and dominant eigen vector of the following matrix using Power method.

3	-1	0
-1	2	-1
0	-1	3

Use

1 1

as the starting vector.

(6)

SECOND HALF

- 4. (i) What is Relationship Diagram? Explain it with a suitable illustration. (4)
 - (ii) Explain the types of SQL JOINs with appropriate examples. (4)
- 5. (i) What is sub-query? How IN and NOT IN clauses are used in SQL queries? (2)
 - (ii) Discuss on the following SQL commands/clause with appropriate examples.
 UNION, CREATE TABLE and FOREIGN KEY

 (3x2)
- 6. Write brief notes on any two of the following topics. (4×2)
 - (i) FTP and DNS
 - (ii) DML and DCL
 - (iii) Trigger