B.E. (EE) Part – IV 7th Semester Examination 2012-13

Subject: Soft Computing Techniques in Electrical Engineering

Paper / Code No: EE - 706/1

Branch: Electrical Engineering

Time: 2 HRS.

Full Marks: 35

i) Use separate Answerscript for each half.

- ii) The questions are of equal value.
- ii) Answer FOUR questions, taking TWO from each half.
- iii) 1/2 mark is reserved for neatness in each half.

FIRST HALF

1.a) What do you mean by the term 'Fuzzy Entropy (E(A)) '?

[2]

b) Prove that:

$$E(A) = \frac{M(A \cap A^c)}{M(A \cup A^c)}$$

[4 1/2]

c) Two sets are given below:

$$A = (0, 0.8, 0.7, 1, 0.5), B = (0, 0.9, 0.7, 0.6, 0.2)$$

In which set "fuzziness" is more and why?

[2]

2. Consider the design of a fuzzy controller for an air conditioning system using Mamdani type fuzzy model. There are two input spaces, Humidity(H) [0% - 100%] and Temperature (T) [$0^{\circ}C - 45^{\circ}C$], and one output space, compressor speed (N) [0 - 100]. Assuming four uniform triangular membership functions --- Very Low (VL), Low (L), High(H) and Very High (VH) on H, T and N, determine the compressor speed N, when H = 90% and T = 32°C. Assume center of largest area method of defuzzification strategies. Fuzzy rules are as follows:

T	VL	L	Н	VH
VL	VL	VL	L	H
L	VL	VL	Н	VH
H	VL	L	VH	VH
VH	L	Н	VH	VH

[8½]

3. Write short notes on any two of the following:

 $[4 \frac{1}{4} \times 2]$

- a) Applications of ANN in Electrical Engineering
- b) Mamdani and Sugeno type Fuzzy system
- c) Back propagation training algorithm

SECOND HALF

- 1. a) What is competitive learning? How is the architecture of a 'Competitive Learning Neural Network' different from that of a 'Conventional Neural Network'?
 - b) How can the connection weights be modified in a competitive learning neural network during training? Describe a scheme for updating connection weights in a competitive learning network.
- 2. a) What is 'Self-Organizing Map (SOM)'? Explain, how lateral competition among output layer neurons results in self organization?
 - b) Explain the role of 'neighbourhood function' in Kohonen's SOM. Discuss the suitability of using 'Mexican Hat' type function as neighbourhood function in Kohonen's SOM.

 $[3+5^{1}/2]$

- 3. a) Define with examples, the 'Objective function' and 'Constraints' in an optimization problem.
 - b) What is 'pattern classification'? Develop a flow chart to show how can the English alphabets be classified into 26 distinct classes using Kohonen's SOM?

 $[3+5^{1}/2]$