B.E. (EE) Part-IV 7th Semester Final Examination, 2012

Industrial Power Electronics (EE-702)

Time: 3 hours Full Marks: 70

Use separate answer-script for each half.

Answer any SIX questions, taking THREE from each half.

Two marks are reserved for neatness in each half.

FIRST HALF

- 1. a) The latching current of a thyristor connected in between a d.c. voltage source of 200V and the load is 50 mA. The duration of the firing pulse is 50 μ s. The load consists of a resistance of 20 Ω in series with an inductance of 0.5 H. Will the thyristor get fired? Give reasons.
 - b) Explain the purpose of connecting i) a resistor across gate-cathode terminals ii) a diode in series with gate circuit and iii) a capacitor across gate-cathode terminals, of a thyristor.
 - c) For a GTO, α_1 =0.3, α_2 =0.85 and I_A= 1A. Find the value of turn-off gain. The symbols have their usual meanings.
 - d) Explain the following ratings of an SCR and state their significances:
 - (i) V_{DWM} (ii) V_{RSM}

Indicate the locations of the above voltage ratings on a typical static i-v characteristic of a thyristor.

[3+3+2+3]

- 2. a) Explain the turn-on and turn-off processes of a GTO with the help of the two transistor analogy. Discuss the merits and demerits of a GTO as compared to a conventional thyristor.
 - b) Following are the parameters and ratings of an UJT.

Inter-base voltage (V_{BB}) = 12 V, Inter-base resistance (R_{BB}) = 5.6 k Ω

Intrinsic stand-off ratio (η) = 0.63, Valley-point current (I_v) = 4 mA

Valley-point voltage $(V_v) = 2 V$, Peak-point current $(I_p) = 5 \mu A$

The maximum gate voltage (V_{GD}) that will not trigger the SCR = 0.18V

Design a suitable UJT based trigger circuit for a single-phase converter (rectifier) operating from a 50 Hz ac mains supply. [(3+3)+5]

- 3. a) The specified limits for di/dt and dv/dt for an SCR are 60 A/µs and 300 V/µs respectively. The supply voltage is 240 V d.c. Determine the values of the snubber circuit parameters and the value of the inductor used to limit di/dt. Take the damping ratio as 0.7. Derive the various expressions used.
 - b) Explain the constructional details of an IGBT. Discuss its transfer and output characteristics.

[4+(4+3)]

4. The following data are specified for a 415 V, 2.2 kW, 1450 r.p.m. separately excited d.c. motor and its speed control system employing armature drop compensation:

Back emf constant = 0.27 V/r.p.m.

Armature circuit resistance = 2.2Ω

Armature circuit inductance = 0.02 H

Total moment of inertia of motor and load = 2.2 kg-m^2

Output resistance of controlled rectifier = 2.4 Ω

Filter choke inductance = 0.1 H

Firing circuit and controlled rectifier combination gain = 50

Current transducer gain = 75 mV/A

- i) Calculate the gain of the summing amplifier to achieve critical damping.
- ii) Calculate the percent speed regulation and hence the no-load speed.
- iii) Calculate the reference input to the current comparison amplifier to limit the armature current to 125 % of the full-load value.
- iv) Calculate the damping ratio of the system if the current feedback loop is opened. [3+4+2+2]
- 5. Write short notes on:

[3+4+4]

- a) Advantages of A.C. Drives
- b) Transfer and Output characteristics of Power MOSFETs
- c) Schottky diode

SECOND HALF

6. Explain the terms which are used as performance factors of a rectifier. Compare the performance factors of a single phase half-wave diode rectifier and a single phase full-wave diode bridge rectifier.

[3+8]

- 7. (a) What do you mean by CCM and DCM operation of a converter? Derive the expression for current through an R-L-E load connected to the output of a 3-phase full controlled rectifier under continuous conduction mode of operation.
 - (b) Draw the circuit diagram of a single phase semi-converter and explain the operation of this converter. Mention the merits and demerits of semi converter over full converter.

[(1+5)+5]

- 8. (a) Draw the circuit of a buck converter and explain its operation with the help of necessary waveforms.
 - (b) Design a buck converter having following specifications:

Input voltage = 100 V

Output voltage = 20 V

Switching frequency = 25 kHz

Maximum allowable ripple in output voltage = 1% of rated value

Maximum power output = 200W

Any other data, if required, should be assumed with proper justification.

[6+5]

- 9. (a) Explain the operation of a 3 phase bridge inverter for 180° conduction mode. Draw the phase and line voltage patterns of output voltage for a star connected balanced load and derive the expression for rms value of line voltage.
 - (b) Explain how output voltage of a single phase inverter can be adjusted by PWM technique.

[7+4]

- 10. (a) Prepare a brief write-up on flyback converter.
 - (b) Explain the operation of a single phase Auto-Sequentially Commutated (ASC) Current Source Inverter. [6+5]