B.E. (EE) Part-III 6th Semester Examination, 2012 Control System –II (EE – 603)

Time: 3-hours Full Marks: 70

Answer SIX questions taking THREE from each half.
Two marks are reserved for neatness in each half.
Use graph paper (supplied), if required.
Justified data(s), if required, can be chosen.

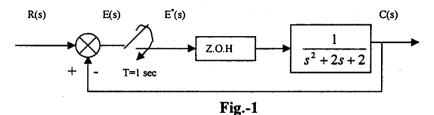
FIRST HALF

1 (a) Determine the Z-transform of the following

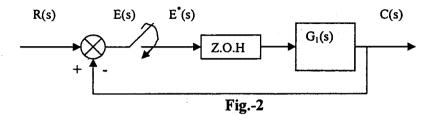
[3x2]

[6]

- (i) $f(t) = t^2$
- (ii) $f(t) = te^{-at}$
- (b) Obtain the pulse transfer function for the sampled data control system shown in Fig.-1 below: [5]



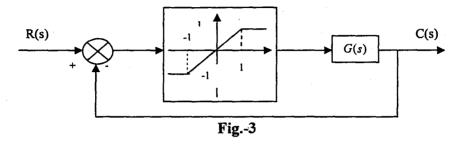
- 2 (a) Obtain the frequency response of Zero-Order-Hold system and plot the characteristics of amplitude and phase angle against the frequency. [6]
 - (b) For step, ramp and parabolic inputs, find the steady-state errors for the feedback control system shown in Fig.-2, where sampling time (T) is 0.4 sec. and $G_1(s) = 20(s+1)/\{(s+4)(s+5)\}$ [5]



- 3 (a) Find out the response of the system described by the difference equation f(k+2) 5f(k+1) + 6f(k) = u(k); given that f(0) = 0 and f(1) = 1.
 - (b) Use Jury's stability criterion to investigate the stability of a discrete-time system described by the characteristic polynomials $F(z) = 3z^4 + 6z^3 + 10z^2 + 4z + 1 = 0$ [5]

- 4 (a) A system described by its dynamic equation as y + 0.6y + 1 = 0. Draw the phase-trajectory for this system by using the method of isoclines. Choose the initial point as required. [6]
 - (b) Describe the Popov's criterion for stability of non-linear systems. [5]
- 5 (a) Fig.-3 shows a nonlinear control system with saturation type of non-linearity.

 Derive the expression for describing function. [6]



(b) Determine whether the system is stable or not, given that

$$x = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$
 x. Choose the initial value as applicable. [5]

SECOND HALF

- 6. (a) What are "states" in a dynamic system? What is meant by linear independence?
 - (b) For the system given below (Fig. 4) obtain a state space model considering f(t) as the input and the displacement of the mass M as the output. Take M = 0.5 kg and K = 1 N/m.

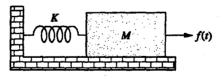


Fig. 4

c) Comment on the stability of the above system.

[3+6+2]

- 7. (a) Define Zero Input Stability.
 - (b) Examine whether the system below is BIBO stable and/or Zero Input Stable:

$$\dot{\mathbf{X}}(t) = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} X(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t); X(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} X(t)$$

(c) State the Linear Quadratic Regulator Problem. Briefly (in two sentences) mention the physical significance of each term in the performance index.

[2+6+3]

- 8. (a) Define the state-transition matrix of a state-space model. How can it be evaluated?
 - (b) State the advantages of LSVF control over classical PI/PD or lead/lag controllers.
 - (c) Obtain the zero input response of the system in 7. (b). Also find the value of the state at 't = 1 sec.'. [3+2+6]
- 9. (a) Write the dynamic equations of an Observer. When is an Observer needed for a plant? What are the pre-requisites that the plant should satisfy for the design of an Observer?
 - (b) Design an LSVF controller for the system G(s) given below to attain $\xi = 0.7$ and $\omega_n = 1 rad / \sec$ for the closed loop plant. $G(s) = \frac{10}{s(s+1)}$
 - (c) What do you mean by 'uncertainty' in a state space model? What is a Robust Controller?

[3+6+2]

10.(a) Derive a discrete time state space model from U_k to Y_k of a continuous-time one which is preceded by a sampler and a zero order hold as shown below in Fig. 5

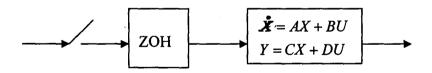


Fig. 5

- (b) What should be the number of states chosen in a given system? Can this number vary?
- (c) Check whether the system in 7 (b) is controllable and/or observable.

[6+3+2]