BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR B.E.(EE) 3rd Semester Final Examination 2012

Subject: Network Theory

Paper / Code No: EE - 301

Time: 3 HRS.

Branch: Electrical Engineering

Full Marks:

i) Answer any SIX questions taking THREE from each half.
ii) TWO marks are reserved for neatness in each half

FIRST HALF

- 1. (a) State and prove the Compensation Theorem for AC networks.
 - (b) In the circuit of Fig.1 find the current through the 5Ω resistor using principle of superposition.

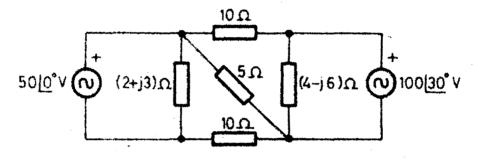


Fig.1

[5+6]

- 2. (a) State and verify the Tellegen's Theorem in a d.c. network.
 - (b) Find Norton's Equivalent Network to the left of the terminals X and Y in Fig.1

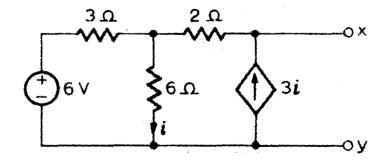


Fig.2

- 3. (a) State and prove the Maximum Power Transfer Theorem for AC networks.
 - (b) In the circuit of Fig.3 find the current through Z_L using Millman's Theorem.

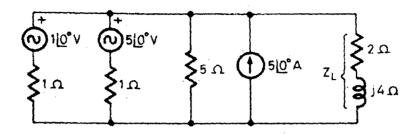
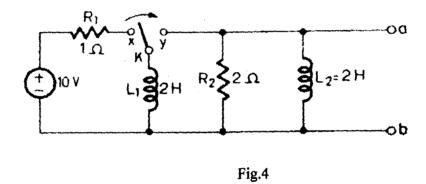



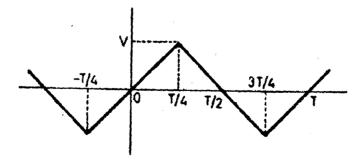
Fig. 3

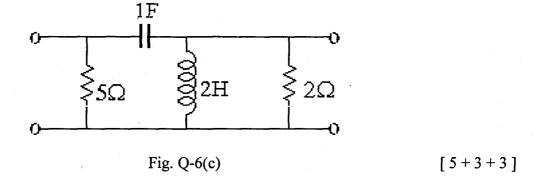
[5+6]

- 4. (a) State and prove the Initial and Final Value Theorems in Laplace Transform.
 - (b) In the circuit of Fig.4, the switch K was initially at x before t=0 and the circuit reached steady state. At t=0 the switch is shifted to y. Find the voltage across the terminals a and b for t>0. Assume zero initial condition for L_2 .

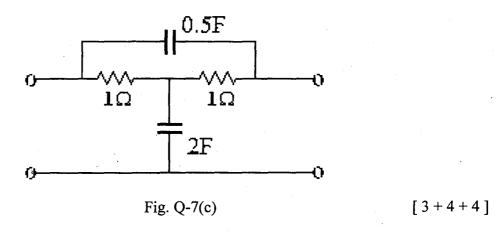
[5+6]

- 5. (a) Derive the Exponential form of the Fourier series from Trigonometric form of the series.
 - (b) Find the Trigonometric Fourier series of the waveform shown in Fig.5




Fig. 5

SECOND HALF


- 6. a) Discuss the properties of a driving point function and a transfer function?
 - b) Verify whether the following functions satisfy the conditions of a valid driving point function or a valid transfer functions or both.

(i)
$$N_1(s) = \frac{s^2 - s + 2}{5s^2 + 2s + 1}$$
 (ii) $N_2(s) = \frac{4}{s^3 + 2s}$ (iii) $N_3(s) = \frac{4s^2 + s + 7}{s + 5}$

c) Find the driving point impedance function for the network shown in Fig. Q-6(c). Show the poles and zeros of the network function on complex frequency plane.

- 7. a) What are the transmission parameters of a network? Where are they used?
 - b) Find the conditions of reciprocity and symmetry of a two-port network in terms of its transmission parameters.
 - c) Find the suitable parameters of the network shown in figure Q-7(c) considering it as a combination of two interconnected networks.

8. Write the equilibrium equations of the mechanical system shown in Fig.8. Draw the electrical analogous network for the system using T-i/f-i analogy. [11]

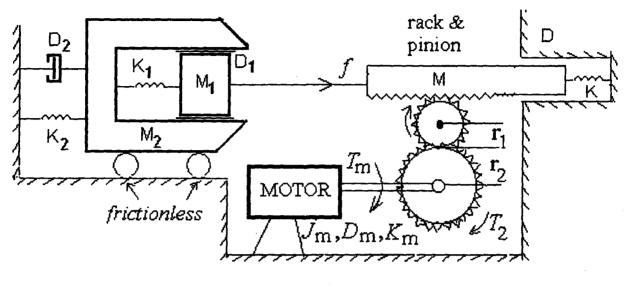
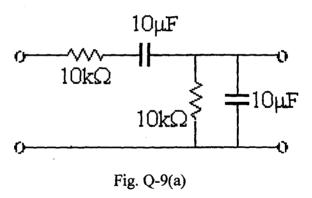



Fig. 8

9. a) Find the voltage transfer function of the network given in Fig. Q-9(a).

b) Show the critical frequencies of the above network function and draw the gain-frequency plot of the output voltage response on semi-log graph paper.

[3+8]

- 10. a) Explain the terms 'short-circuit impedance', 'open-circuit impedance' and 'image impedance' with respect to a two-port network. [3]
 - b) Write critical notes on any two:

|4x2 = 8|

- i) Electrical analogous network of water heater (thermal) system.
- ii) h-parameters in terms of Z-parameters.
- iii) Energy stored in a mutually coupled inductor.