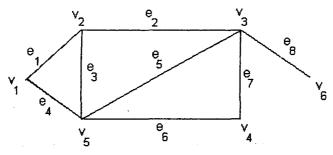
B.E (C.S.T) 5th Semester Exam, 2011

Mathematics-v (MA-501)

Time: 3hrs Full Marks: 70

Use Separate Answer script for each half.


Answer <u>six questions taking three</u> from each half

Two marks are reserved for general proficiency in each half.

Symbols have their usual meaning.

First Half

- 1. i) State and prove Euler's Handshaking Lemma.
 - ii) Can there be a simple infinite graph with finite number of vertices?
 - iii) Define a K-regular graph? Show that if G is a K-regular graph with n vertices and e edges then $\delta = 2e/n = \Delta$.
 - 5+2+4=11
- 2. i) Define spanning subgraph and induced subgraph. Give examples.
 - ii) Give examples of walk of length 3 and length 4 in the following graph.

- iii) The degree of every vertex of a graph G of order 25 and size 62 is 3, 4, 5 or 6. There are 2 vertices of degree 4 and 11 vertices of degree 6.How many vertices have degree 5?
 - 3+4+4=11

4+3+4=11

- 3. i) Using principle of induction, show that 3²ⁿ -8n -1 is divisible by 64.
 - ii) Using Division algorithm, show that product of any n consecutive integers is divisible by n.
 - iii) State Euclidean algorithm. Use it to obtain integers u and v such that gcd(13,80) = 13u + 80v
 - 4. i) If $ac \equiv bc \pmod{m}$ and gcd(c, m) = 1 then show that

 $a \equiv b \pmod{m}$

- ii) Show that $3.4^{n+1} \equiv 3 \pmod{9}$ for all positive integer n.
- iii) Show that N = 35078571 is divisible by 11.
- 4+4+3=11
- 5. i) State and prove Fermat's Little Theorem.
 - ii) Using alternative definition of gcd and LCM, find gcd(40,24) and LCM(54,50).
 - iii) Find the number of integers less than n and prime to n where n = 324. 5+3+3=11

SECOND HALF

6. a) Let f(x) be continuous and have continuous derivative of order (n+1) for all x in an interval I containing the interpolating points $x_0, x_1, x_2, x_3, \dots, x_n$. Then at any point x on I, prove that the error in approximating f(x) by the interpolating polynomial

$$R(x) = f(x) - g(x) = \frac{w(x)f^{n+1}(c)}{(n+1)!}$$

where c is a point in the interval I and w(x) is given by

$$w(x) = (x-x_0) (x-x_1) (x-x_2)... (x-x_n).$$

b) Calculate f(0.4) using the table

e(x) is given by

7. Compute f'(0.2) and f''(0.2) for the function y=f(x), given in the table:

after deducing the associated formula.

8. a) Construct the interpolating cubic spline with free boundary conditions.

b) Discuss Gauss-Seidel iteration method by considering a system of n linear equations with n variables $x_1, x_2, x_3, ..., x_n$ viz.

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1,$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2,$

[6+5]

[11]

$$a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n = b_n.$$
 [7+4]

9. The following table gives the specific heat of ethyl alcohol at different temperatures. Estimate the specific heat corresponding to 15°C.

Sp. Heat(y): 0.51 0.55 0.57 0.59 0.62 0.67 [11]

10. a) Derive Predictor-Corrector formula which use forward differences in Milne's method to solve the first order differential equation
$$\frac{dy}{dx} = f(x, y)$$
 with the initial

condition $y(x_0) = y_0$ b) Use Milne's method to solve the following differential equation

$$\frac{dy}{dr} = 1 + y^2 \text{ with } y(0) = 0$$

and compute y(0.8), given that y(0.2) = 0.2027, y(0.4) = 0.4228, y(0.6) = 0.6841.