B.E. (CST) Part-II 3rd Semester Examination-2011 Mathematics-IIIC (MA-303)

Time-3 hours Full Marks: 70

Use separate answerscript for each half.

Answer SIX questions, taking THREE from each half.

Two marks are reserved for general proficiency in each half.

FIRST HALF

- 1(a) Define analytic function.
- (b) Prove that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though C-R equations are satisfied at that point.
- (c) If f(z) = u + iv is an analytic function of z then prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2.$$

[2+4+5]

2. State and prove the Cauchy integral formula for the derivative of an analytic function f(z). Evaluate the integral $\int_{0}^{1+i} z^{3} dz$ along the paths (i) $y = x^{2}$ (ii) $y^{2} = x$

[(1+4)+(3+3)]

3(a) If F(a) = $\int_{c}^{c} \frac{(z^2 + z + 1)}{z - a} dz$, where C is a positively oriented circle $x^2 + y^2 = 9$. Find F (4) and F(2i).

function
$$f(z) = \frac{z^2 + z + 1}{(z - 2)(z - 3)}$$
 in the regions
i) $|z| < 2$ ii) $2 < |z| < 3$ iii) $|z| > 3$

i) $|z| \leftarrow 2$ ii) $2 \prec |z| \prec 3$ iii) |z| > 3

Hence deduce the sum $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{5^2} + ...$

u(0,t) = 0, u(l,t) = 0

u(x,0) = f(x).

 $u = c^2 u$

where

(b) Find the Taylor's or Laurent series in powers of z which represent the

 $[5+2\times3]$

[1+5+5]

[(1+4)+6]

 $= \mathbf{k}(l-x), \ \frac{l}{2} \le x \le l.$

4. Define residue of a function f(z) at the isolated singular point z_0 . Using the

5(a) Define Fourier Series of a function f(x) of period T. Find the half

(b) Solve and give a physical interpretation to the following Boundary

Value Problem by separation of variables technique.

range expansion in a cosine series of the function f(x) = kx, $0 \le x \le \frac{l}{2}$

method of contour integration evaluate the following integrals (Any two):

i) $\int_{-\infty}^{\infty} \frac{\cos mx dx}{(x^2 + a^2)(x^2 + b^2)}$ ii) $\int_{0}^{\infty} \frac{\sin mx}{x} dx$ iii) $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)^2} dx$

SECOND HALF

Q.6.a) Let G be a set of all real numbers except—1. Define * on G by

$$a * b = a + b + ab$$
. Prove that $(G,*)$ is a group.

b) Let G be a group in which $(ab)^n = a^n b^n$ for three consecutive integers

and for all $a, b \in G$. Prove that (G, \cdot) is an abelian group.

c) Let (G, \cdot) be a group and $a, b \in G$. Prove that order of a = order of $b^{-1}ab$.

$$4 + 4 + 3 = 11$$

Q.7.a) Define left coset. If H be a subgroup of G, prove that any two left cosets are either identical or disjoint.

b) Define index of a subgroup in a group. Find the index of $\{0,3,6,9\}$ in (Z_{12}, \oplus) .

2 + 4 + (2 + 3) = 11

Q.8.a) State and prove of Lagrange's theorem on a finite group.

b) Prove that the intersection of two normal subgroups of a group ${\sf G}$ is a normal subgroup of ${\sf G}$

$$(2+4)+5=11$$

Q.9.a) Let G be a group. Show that $f: G \to G$ given by $f(x) = x^{-1}$ is an isomorphism \Leftrightarrow G is abelian.

b) Let R be a ring and $a, b \in R$. Prove that

$$a(b-c) = ab - ac$$

(-a)(-b) = ab

$$a(b-c)=ab-ac$$

6 + (3 + 2) = 11 Q.10.a) (i) For a graph G = (V, E) what is the largest possible value for

$$n(V)$$
 if $n(E)=19$ and $deg(v_i)\geq 4$ for all $v_i\in V$?

(ii) Prove that the number of edges in a bipartite group with n

vertices is at most $\frac{n^2}{2}$.

b) If G is a connected simple planar group with $n(\geq 3)$ vertices

b) If G is a connected simple plana
$$m(>2)$$
 edges and r regions. Prove that

(i)
$$m \ge \frac{3r}{2}$$

(ii)
$$m \le 3n - 6$$

(iii) Further if G is triangle -free then
$$m \le 2n - 4$$

$$(3+2)+(2+2+2)=11$$