BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR B.E. 7th SEMESTER (CST) FINAL EXAMINATION, 2011 Digital Image Processing (CS706/6)

Time: 3 hours Full marks: 70

Answer any five questions

1. The gray-level histogram of an image with 8 gray-levels is given below:

Gray-level value	0	1	2	3	4	5	6	7
Frequency	3000	2000	1500	200	300	500	1000	1500

Compute the gray-level histogram of output image if the input is enhanced by histogram equalization technique.

- b) Suppose that a digital image is subjected to histogram equalization. Show that a second pass of histogram equalization will produce exactly the same result as the first pass.
- c) An image has the gray level PDF $p_r(r)$ shown in the following figure. It is desired to transform the gray levels of this image so that they will have the specified $p_z(z)$ shown in the Fig. 1. Assuming continuous quantities find the transformation (in terms of r and z) that will accomplish this task. [7+4+3]

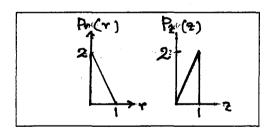


Figure 1:

2. Define image segmentation. Suppose there are two types of regions R_1 and R_2 in a gray level image. Gray-level of pixels that belong to R_1 follows a Gaussian distribution with mean μ_1 and variance σ^2 . Pixels belongs to R_2 also follow a Gaussian distribution with mean μ_2 and same variance. If the probability that a pixel belongs to R_1 is P_1 and that for R_2 is P_2 , then find out the optimum threshold for image segmentation by gray-level thresholding.

(a) What are the different types of redundancies present in an image? Which coding method is effective for reducing spatial redundancy? [4](b) Find out code words and average code length using Huffman coding

scheme for set of events S_i with probabilities given below

 S_7 S_8 S_1 S_2 S_3 S_4 S_5 S_6 Input Probability 0.3 0.2 0.150.150.10 0.05 0.03 0.02

[10]

- 4. (a) Describe an algorithm for thinning. State the difference between medial axis and skeleton obtained through thinning.
 - (b) Define the Hit-and-Miss transform. What is the use of this transform. [(6+4)+4]
- (a) Compare the Prewitt and Sobel operators. [4]
 (b) Chronologically write the steps of Canny edge detection algorithm. [5]
 c) Describe briefly edge linking method by proximity. [5]
- 6. (a) Compute the first difference of the code 0101030303323232212111 and find its shape number. Assume that four connectivity is considered for obtaining the aforesaid code.
 [3]
 (b) Draw the medial axis of a rectangle and an equilateral triangle.
 [4]
 - c) Describe with necessary diagram how a digital boundary can be approximated by a polygon using splitting technique. [7]
- 7. (a) Obtain the gray-level co-occurrence matrix of a 5×5 image composed of a checkerboard of alternating 1's and 0's if the position operator P is defined as 'one pixel to the right'. Assume that the value of the top left pixel is 0.
- (b) What are the different approaches to describe the texture of a region? How do you obtain the texture of a region using second order histogram moment? Define Euler number. [2+5+2]
- 8. Write short notes on:
 - (a) Discrete Cosine Transform
 - (b) Median filter