(CONFIDENTIAL)

BE 7th Semester Examination, 2011

Subject: Compiler Design

Paper/Code No CS 703

Branch: CST Full Marks: 70

Answer Q. no. 1 and any four from the remaining questions.

- 1. (a) What are the advantages of a translator module? [2](b) What are the reasons behind writing a multi-pass compiler rather than a single-pass
- (c) What do you mean by an ambiguous grammar? Explain with the following grammar
- and parse tree, how ambiguity takes place for the string 3-2+1, where {expr,'digit} is the set of non-terminal symbols, expr is the start symbol of the grammar and {+, -, 0, 1, 2,...,9} is the set of terminal symbols of the grammar. [1+3]

expr
$$\rightarrow$$
 expr + expr | expr - expr | digit digit \rightarrow 0|1|2|3|4|5|6|7|8|9

- (d) Define four types of grammar. [4]
- (e) Inserting a code-optimizer within a compiler increases compilation time. How would you justify the presence of code-optimizer within a compiler?

 [2]
- 2. (a) Construct the LR(0) finite control transition diagram for the grammar with the set of terminal symbols $V_T = \{x, y, z, a, q, \#\}$, set of non-terminal symbols $V_N = \{S', S, A, B\}$, # being a special terminal symbol used as end-marker, with the set of production rules as follows:

 [5]

$$S' \rightarrow S \#$$

 $S \rightarrow xAy | xBy | xAz$
 $A \rightarrow aS | q$
 $B \rightarrow q$

- (b) Compute FIRST and FOLLOW of all non-terminal symbols except S'. Construct the LR parsing table and from the table tell whether the grammar is SLR or not . [(2+3)+4]
- 3. (a) Consider the following code fragment. Generate the three-address code for it. [2] while c>d do

$$\{x = x + y;$$

if $a < b$ then $a = a + b;$ else $c = c + d;$

(b) Write the syntax directed translation schemes for the grammar rules if else, while and boolean expressions. [3+3+6]

174080 V

 4. (a) State the disadvantages of a top-down parser to (b) How can left-recursion be removed from a gram (c) Define FIRST(α) and FOLLOW (A), α ∈ V* and V_N is the set of non-terminal symbols. (d) Define LL(1) grammar. (e) Discuss about recursive descent parser. How does recursive descent parser? 	nmar? [2] I A \in V _N , where V is the alphabet and [3]
5.(a) State the conditions to be fulfilled for common optimization.(b) Explain with example how DAG can be used for Elimination.(c) Define available expression data flow property. Property useful for? State data flow equations for available expression.	[3] or common sub-expression [5] Which purpose is this data flow
6.(a) Define synthesized attribute and inherited attribute and inherited attribute.	bute. What is an L-attributed [2+2+2]
Explain how L-attributed definition will be implem evaluating the expression 9-5+2 using the following is the set of terminal symbols and {E, R, T} is the start symbol of the grammar.	grammar rules when { +, -,(,), num}
E → T R R → + T R -T R R → ϵ T → (E) T → num	
7. (a) What are the criteria required to be satisfied for (b) Define activation record. What are the different Explain the role of static link and display in activat using a suitable program segment. (c) How will display be created when a function at function at level i?	parts of activation record? ion record during execution by $[2+1+(2+2)]$