B. E. Part II (CST) 4th Semester Examination, 2007

Subject: Computer Organization

Paper: CST-402 Time: 3 hours Full marks: 70

Answer any 4

- 1. a) Describe the opcode extension scheme for optimizing the opcode length of an m/c instruction set. 10
 - b) Show the design of a 4k X 16 RAM chip with four 2k X 8 memory unit. 7.5
- 2. a) State Booth's algorithm for multiplication of two 2's complement numbers. Let multiplicand Y=1010 and multiplier X=1011 and both the X & Y are represented in 2's complement. Find product P = YX following Booth's algorithm. 14
 - b) Explain in brief the register indirect addressing of operands. 3.5
- 3. a) Identify the major differences between asynchronous and interrupt driven data transfer schemes. Give examples. 10
 - b) What is 'cycle stealing' DMA data transfer scheme. Comment on its effectiveness in data transfer from an Input device to the Main memory. 7.5
- 4. Illustrate the 'diagonal format' of encoding micro-instructions for a microprogramed control unit with an example. Find out the cost optimal micro-instruction format for a system with the following set of micro-instructions and controls. Ensure minimum length of the microinstruction format as well as the maximum parallelism among the microoperations.

Micro-instructions	Control signals	
•		
I_{l}	b, e, f	
I_2	a, b, c, d	
I_3	a, b, e, h	
I_4	b, e, g	17.5

5. a) Assume that time required for the four functional units (of an instruction pipeline), which operates in each of the 4 cycles, are as follows:

- i) Find the reservation table for this pipeline architecture.
- ii) How much speedup in the instruction execution rate will be gained in the pipeline of Figure 1 over the non-pipelined architecture. Ignore any latency impact.
- iii) Suggest how speed mismatch among the pipeline stages of Figure 1 can be managed. 1
- b) Consider the following reservation table for a 4-stage $(S_1, S_2, S_3, \text{ and } S_4)$ non-linear pipeline:

31	X					X
S2		X		X		
Sz	- 20	0	X			
54				X	X	
	1	2	3	4	5	6
	-		tin	ne		

Figure 2

- i) Find out the forbidden latencies of this pipeline.
- ii) Give the block diagram for the non-linear pipeline architecture.

7.5

- 6. a) Define m-way set associative mapping. A computer system has a 128 byte cache. It uses 2-way set associative mapping with 8 bytes in each block. The physical address size is 16-bit and the word size is 1 byte.
 - Draw a diagram showing the organization of the cache indicating how physical addresses are related to cache addresses.
 - ii) To what block frames of the cache can the address 20FFh be assigned?
 - iii) Point out the advantage of 2-way set associative mapping over 1-way set associative mapping.

10

b) What is CAM? Find out the expression of match logic of a CAM.

7.5

- 7. Give the detailed design of the following:
 - a) Memory interfacing with complete decoding

10

b) Addition of 6 n-bit numbers with Carry Save Adders

7.5.

pg 2