B.E. 8th SEMESTER EXAMINATION, 2007

ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS

Subject Code: CST 812

Full Marks: 100 Time: 3 hrs Answer any five questions. All questions carry equal marks. 1. (a) Find a good state space representation, for each of the problems given below: (i) CHESS, (ii) WATER-JUG, (iii) 8-PUZZLE and (iv) TRAVELLING SALESMAN. $[2\times4]$ (b) Why appropriate state space representation is needed for solving the problems? [3] (c) Try to describe a good heuristic function for the following problem: [3] A A B В C Start State Goal State (d) Show different steps to reach from start state to Goal State. [6] 2. (a) When would best-first search be worse than simple breadth-first search?

(b) Why and how the A* algorithm work properly on graphs containing cycles?

AND-OR graphs respectively.

graph.

(c) Write the differences between the algorithms used for searching OR graphs and

(d) Write the algorithm for checking duplicate nodes when a new node is added to the

[2+5]

 John likes all kinds of food. Apples are food. Chicken is food. 	
 Anything anyone eats and isn't killed by is food. Bill eats peanuts and is still alive. Sue eats everything Bill eats. 	
(a) Translate these sentences into formulas in predicate logic.	6]
(b) Prove that John likes peanuts.	[2]
(c) Convert these formulas into clause form.	[6]
(d) Using resolution principle, answer the question, "What food does Sue eat?"	[6]
4. Suppose you can perform the following chemical reactions:	
$(Ca+H_2O) \rightarrow CaO+H_2$	
$(C+O_2) \rightarrow CO_2$	
$(CaO+CO_2) \rightarrow CaCO_3$	
(a) Assume you have some quantities of Ca, H ₂ O, C and O ₂ . Show that it is pot to produce CaCO ₃ .	ossible [6]
(b) Write the steps of converting a formula into Prenex Normal Form.	[6]
(c) How validity and inconsistency of a formula is checked in case of First ord Logic?	ler [4+4]
5. (a) How information is represented using Semantic Net?	[3]
(b) Draw the semantic net for representing the predicate "Score(Cubs, Dodger	rs, 5-3)" [3]
(c) How quantified expressions are represented using Semantic net? Illustrate example.	with an [6]
(d) State Bayes' Theorem and describe how the theorem is used to reasoning information is not certain and precise?	when [2+6]

3. Consider the following sentences:

6. Consider a relational system that relates *Fast-Runners* with *Young* people by the following production rule PR1:

PR1: If X-is Young Then X-is-a-Fast Runner.

Suppose membership distributions of subsets *Young* and *Fast-Runner* represent Age/membership and speed/membership values respectively, given as;

 $Young = \{10/0.1, 20/0.6, 30/0.8, 40/0.6\}$ and Fast-Runner = $\{5/0.1, 8/0.2, 10/0.4, 12/0.9\}$

- (a) Construct Fuzzy Relational Matrix, which denotes the membership value of relation between Age and Speed. [6]
- (b) Suppose the measured membership distribution of a *Young* person is: $Young = \{10/0.01, 20/0.8, 30/0.7, 40/0.6\}$. Find out the fuzzy membership distribution of the person being a Fast-Runner. [4]
- (c) Why Fuzzy set is called generalization of Crisp set? [3]
- (d) Define Linguistic variable using a suitable example and describe the relationship between Fuzzy variable and Linguistic variable. [4+3]
- 7.(a) Show the computation of the first 3 moves in a tic-tac-toe game using the α - β cut-off algorithm. [8]
- (b) State the differences between Monotonic and Non-Monotonic Reasoning? [4]
- (c) Describe the architecture of Truth Maintenance system used for Non-Monotonic reasoning. [5]
- (d) Why Fuzzy Reasoning is called Approximate Reasoning not Exact Reasoning?
- 8. Write Short Notes: (Any four)

Expert Systems, (ii) Logical Consequence of prepositional Logic, (iii) Default Reasoning, (iv) Production Systems, (v) Blind Search Procedures and (vi) Hill-Climbing method.

[4×5]