B.E. End-semester (3rd Semester ETC, CST, EE, IT) Examination, 2013 PHYSICS (PH - 3401)

Full Marks: 70

Time: 3 hrs.

Answer Question no. 1 and any five from the remaining questions:

1. Answer any five questions:

- i) Show that the total number of electronic states in a one dimensional crystal having N number of sites is 2N.
- ii) What are type-I and type-II superconductors?
- iii) State Wiedemann- Franz law regarding the free electron theory of metal.
- iv) State the weaknesses of the Debye's theory of specific heat.
- v) What is polarizability for a dielectric material?
- vi) What do you mean by magnetic susceptibility?
- vii) What is hysteresis effect in a ferromagnetic material? State the significance of hysteresis loop.

 $[5 \times 2 = 10]$

- 2. a) What is Meissner effect? How is it explained using London's equation?
 - b) Obtain London's equation assuming that the ground state of the superconducting phase be filled with Cooper pairs of constant density.

[(2+4)+6]

- 3. Consider an intrinsic semiconductor which is kept at temperature T.
 - a) Obtain expressions for the concentrations of electrons and hole in the conduction band.
 - b) Show that

$$\mu = E_v + \frac{1}{2} E_g + \frac{3}{4} k_B T \ln (m_h^*/m_e^*)$$

where the symbols carry their usual meaning.

[4+8]

- 4. a) State Dulong-Petit law of specific heat. Discuss its disagreement with experimental results.
 - b) Deduce Einstein's expression for the specific heat of solids and compare this with experimental results. Point out the limitations of Einstein's theory and discuss how these were improved by Debye.

$$[(2+1)+(5+1+1+2)]$$

5. a) Show that for a good conductor (conductivity σ=∞) any free charge density within a conductor dissipates after considerable time. Write the Maxwell's equations within the conductor after this time. Show that the expression for skin depth for a conductor should be

Skin Depth =
$$d = \omega \sqrt{\frac{\omega}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega}\right)^2} - 1 \right]^{-\frac{1}{2}}$$
.

b) State the limitations of classical free electron theory of metal.

[(3+2+5)+2]

- 6. a) What is molecular polarizability? Assuming the internal field solely arises due to polarization obtain Clausius-Mosotti relation.
 - b) An electron is moving round a nucleus along a circular orbit:
 - i) Show that it is equivalent to magnetic dipole of moment $\mu_m = -(e/2m) L$, where L is its angular momentum, e the charge and m the mass.
 - ii) Show that if a magnetic field B is applied at an angle with the plane of orbiting electron, the plane precesses about the direction of the magnetic field with a frequency eB/(2m).

 [2+6+(2+2)]
- 7. a) Find the energy of a magnetic dipole placed in an external magnetic field.
 - b) Show that the frequency of revolution of an electron around the nucleus in atom changes on applying magnetic field. Hence obtain an expression for susceptibility of a diamagnetic material.

[2+10]

- 8.a) Using simple model of atomic dipoles with permanent magnetic moments where dipole may orient itself parallel and anti-parallel to an external field, obtain an expression of susceptibility of a paramagnetic substance.
 - b) Assuming Weiss internal field in a ferromagnetic material, deduce Curie-Weiss law and find expression for the Curie point and Curie constant.

[5+7]