B.E. End-semester (3rd Semester ETC, CST, EE, IT) Examination, 2012

PHYSICS (PH - 3401)

Full Marks: 70 Time: 3 hrs.

Answer any five questions:

- 1. a) What are the different types of polarization in materials? What is polarizability?
 - b) Show that the electronic polarizability is given by $\alpha_e = 4\pi\epsilon_0 R^3$, where R is the radius of an atom.
 - c) What is internal field in solids? Assuming the Lorentz field, deduce Clausius-Mosotti relation.

[4+5+5]

- 2.a) Deduce the expression for concentration (n) of electrons in the conduction band of an intrinsic semiconductor at a temperature T.
- b) Show that the product (np) of electron and hole concentrations are independent of the Fermi level.
- c) Find out the position of the Fermi level in an intrinsic semiconductor. Draw the position of the Fermi level when the semiconductor is doped to make an n-type semiconductor.

[6+4+4]

- 3. a) What is magnetization (M)? Show that $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$, the symbols have usual meaning.
 - b) Show that an electron orbiting round a nucleus along a circular path is equivalent to magnetic dipole of moment $\mu_m = -(e/2m) L$, where L is its angular momentum, e the charge and m the mass.
 - c) Show that if a magnetic field B is applied at an angle with the plane of orbiting electron, the plane executes a precessional motion about the direction of the magnetic field with a frequency $\omega_L = eB/(2m)$.

4.a) Show that application of magnetic field to an atom changes the frequency of revolution of an electron round the nucleus. Hence deduce an expression for susceptibility of a diamagnetic material.

[14]

- 5. a) Assuming that the dipole moment of an atom to be μ_B , where μ_B is the Bohr magneton, and that the dipole may orient itself parallel and anti-parallel to an external field, find an expression for magnetization of a paramagnetic material.
 - b) Using the above expression and assuming a Weiss type internal field in a ferromagnetic material, deduce Curie-Weiss law and find expression for the Curie point and Curie constant.

[8+6]

- 6. a) What is Meissner effect? Show that this effect is not consistent with Maxwell's equations. Using the two fluid model of a superconductor, show how London equations may be arrived at and that Meissner effect may be explained from them.
 - b) Using London equations, find an expression for London penetration length.

[(2+2+5)+5]

- 7.a) Show that the free charge density in a conductor changes with time as $\rho_t(t) = \rho_t(0) \exp(-t/\tau)$, where τ is the charge dissipation time. Explain the significance of dissipation term in distinguishing conductivity of materials.
 - b) What is skin depth? Using Maxwell's equations describing electromagnetic wave propagation obtain an expression for skin depth.

[7+7]

- 8. Write short notes on any two:
 - i) Ferroelectricity,
- ii) Kronig=Penney model,
- iii) Cooper pair and BCS theory of superconductivity.
- iv) Wiedemann-Franz law.

[2×7]