B.E.(CE/ME/MET/MIN) 3rd Semester Final Examination, December 2011

Mathematics-IIIA (MA-301)

Time: 3 hours

Full Marks: 100

Use separate answer script for each half.

FIRST HALF

Answer Q.No.1 and any two from the rest.

1. Answer any three questions.

(3x5)

- (a) Define analyticity and singularity of a complex function at a point. Give an example (with proper explanation) of a function which is continuous everywhere, nowhere analytic and has no singular point.
- (b) Define harmonic conjugate. Show that if two functions u(x,y) and v(x,y) are to be harmonic conjugates of each other, then both u and v must be constant functions.
- (c) State Cauchy-Goursat theorem. Give an example to show that the condition of Cauchy-Goursat theorem are sufficient but not necessary.
- (d) Evaluate the line integral

$$\int_0^{1+i} f(z) dz \text{ where } f(z) = y-x-3ix^2$$

(i)along the straight line from z=0 to z=1+i and (ii) along the imaginary axis from z=0 to z=i (i.e., OA) and then along a straight line parallel to the real axis from z=i to z=1+i (i.e., AB).

Hence determine the value of the contour integral

$$\int_{\Gamma} f(z)dz$$
 where Γ is the closed contour OABO.

What conclusion can be drawn regarding analyticity of f(z).

(e) Determine all singular points, their nature and residue at the singular points of the following functions:

$$(i) \frac{1-coshz}{z^3}$$
 (ii) cotz.

- 2. (a) State and prove Cauchy Integral formula.
 - (b) Evaluate the contour integral using Cauchy Integral formula

$$\int_{C} \frac{sin\pi z^{2} + cos\pi z^{2}}{(z-1)(z-2)} dz \text{ where c is the circle } |z| = 3 \text{ described in the positive sense.}$$

3. (a) If f(z) is analytic in an open region R and $z_0 \in R$ then prove that f(z) can be expanded in the form

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 where $a_n = \frac{f^{(n)}(z_0)}{n!}$, n=0,1,2,.........

Specify the domain in which expansion is valid.

(b) Represent the function $f(z) = \frac{z+1}{z-1}$ by (a) its Maclaurin series and give the region of validity for the representation, (b) its Laurent series for the region $1 < |z| < \infty$.

$$(6+4)$$

4. Apply Cauchy residue theorem to evaluate the following integrals (any two):

(i)
$$\int_0^{2\pi} \frac{dt}{(a+b \cos t)^2} (a > b > 0), (ii) \int_0^{\infty} \frac{dx}{x^4 + 1}, (iii) \int_0^{\infty} \frac{x \sin x \, dx}{x^2 + a^2} (\text{Re}(a) > 0).$$

(5+5)

5. (a) Let C be the line segment from z=i to z=1. Without evaluating the integral show that

$$\left| \int_{c} \frac{dz}{z^4} \right| \le 4\sqrt{2} \ .$$

(b) State Dirichlet's conditions for convergence of a Fourier series. Prove that the even function $f(x) = |x| \text{in } -\pi < x < \pi$ has a cosine series in Fourier's form as

$$|x| \sim \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right].$$

Apply Dirichlet's conditions of convergence to show that the series converges to |x| throughout

$$-\pi \leq x \leq \pi$$
.

Also show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$.

Second Half

Two marks are reserved for general proficiency. Answer any three questions

- 6. a) A tailor has 80 sq m of cotton material and 120 sq m of woolen material. A suit requires 1 sq m of cotton and 3 sq m of woolen material and a dress requires 2 sq m of each. A suit sells for Rs 500 and a dress sells for Rs 400. Formulate a LPP in terms of maximizing the income.
 - b) Solve graphically the LPP.

Minimize
$$z = 2x_1 + 3x_2$$

Subject to $2x_1 + 7x_2 \ge 22$
 $x_1 + x_2 \ge 6$
 $5x_1 + x_2 \ge 10$, $x_1, x_2 \ge 0$

5+6=11

7. a) Show that $x_1 = 5$, $x_2 = 0$, $x_3 = -1$ is a basic solution of the system of equations $x_1 + 2x_2 + x_3 = 4$ $2x_1 + x_2 + 5x_3 = 5$

Find the other basic solutions if there be any.

b) Show that Hyperplane is a convex set.

$$7+4=11$$

- 8. a) Prove that in E^2 , the set $\{(x,y) \mid x+2y \le 5\}$ is a convex set.
 - b) Show that the LPP

Maximize
$$z = 4x_1 + 14x_2$$

Subject to $2x_1 + 7x_2 \le 21$
 $7x_1 + 2x_2 \le 21$
 $x_1, x_2 \ge 0$

admits of an infinite number of solutions.

4+7=11

- 9. a) Show that the set of all feasible solutions of a LPP is a convex set.
 - b) Solve the following LPP

Maximize
$$z = 2x_1 + 3x_2 + x_3$$

Subject to $-3x_1 + 2x_2 + 3x_3 = 8$
 $-3x_1 + 4x_2 + 2x_3 = 7$
and $x_1, x_2, x_3 \ge 0$

4+7=11

10. Solve the boundary value problem $C^2 u_{xx} = u_t$ with the conditions u(l,t) = 0 for all for all $t \ge 0$, $\frac{\delta u}{\delta t}$ (0,t) = 0 and u(x,0) = 20x for 0 < x < 1