B.E. 1st SEMESTER EXAMINATIONS, 2011

Mathematics- I

(MA-101)

Full Marks: 70

Time: 3 hrs

Use separate answer script for each half

First half

Answer question no. 1 and any two from the rest of this half

- 1. Answer any five (5x3=15)
 - a) If $f(x) = \tan x$, then prove that

$$f^{n}(0) - {^{n}C_{2}}f^{n-2}(0) + {^{n}C_{4}}f^{n-4}(0) - \dots = \sin(\frac{n\pi}{2}).$$

b) If z = f(x, y), where $x = e^{u} \cos v$, $y = e^{u} \sin v$, show that

$$y\frac{\partial z}{\partial u} + x\frac{\partial z}{\partial v} = e^{2u}\frac{\partial z}{\partial v}.$$

- c) If $u = x\phi(y/x) + \psi(y/x)$, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = x\phi(y/x)$.
- d) Expand $3x^3 + 2x^2 7$ in powers of x + 3.
- e) Determine the radius of curvature of the curve $x^2 + y^2 4x + 5$ at the point (5, 0).
- f) Determine the asymptotes to the curve $x^4 y^4 + 3x^2y + 3xy^2 + xy = 0$.
- g) Determine the Cauchy's remainder after n terms in the expansion of log(1+x).
- 2. a) State and prove Taylor's theorem with Lagrange's form of remainder.

b) Prove that
$$Lt \frac{f(a+h)-2f(a)+f(a-h)}{h^2}=f''(a)$$
, provided

$$f''(x)$$
 is continuous. (10)

3. a) If H is a homogeneous function of degree n in x and y and if $u = (x^2 + y^2)^{-\frac{n}{2}}$,

then prove that
$$\frac{\partial}{\partial x} \left(H \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(H \frac{\partial u}{\partial y} \right) = 0$$
.

b) If
$$V = (x^2 + y^2 + z^2)^{1/2}$$
, then show that $V_{xx} + V_{yy} + V_{zz} = 2/V$. (10)

- 4. Answer any three
- a) Determine the radius of curvature at the origin to the curve $x^4 + y^2 = 6a(x + y)$.
- b) Find the asymptotes of $x(x-y)^2 3(x^2 y^2) + 8y = 0$.

c) If f(x, y) = 0 be the equation of a curve, show that the radius of curvature at any point

$$(x,y)$$
 to the curve can be expressed as
$$\rho = \frac{\left(f_x^2 + f_y^2\right)^{3/2}}{f_{xx}f_y^2 - 2f_{xy}f_xf_y + f_{yy}f_x^2}$$

d) Using Lagrange's method of undetermined multiplier compute the minimum distance of the plane x + y + z = 1 from the origin. (10)

SECOND HALF

Answer any three questions

(Two marks are reserved for general proficiency)

5. (a) Evaluate

$$\int \int_{R} \frac{1}{\sqrt{x^2 + y^2}} dx dy,$$

where $R = \{ |x| \le 1, |y| \le 1 \}.$

(b) Evaluate

$$\int \int \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} dx dy$$

over the positive quadrant bounded by the circle $x^2 + y^2 = 1$.

(5+6)

6. (a) Test the convergence of the series

$$\frac{6}{1.3.5} + \frac{8}{3.5.7} + \frac{10}{5.7.9} + \dots$$

(b) Test the convergence of the series $\sum a_n$, where $a_n = (n^3 + 1)^{\frac{1}{3}} - n$. (6+5)

7. (a) Prove the series

$$x-\frac{x^2}{2}+\frac{x^3}{3}-...+(-1)^{n+1}\frac{x^n}{n}+...$$
 to ∞

is absolutely convergent when |x| < 1 and conditionally convergent when |x| = 1.

(b) Discuss the convergence of the series

$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2 + 1}.$$

(6+5)

- 8. (a) Find the equations of the tangent plane and normal line to the surface $2x^2 + y^2 + 2z = 3$ at the point (2,1,-3).
- (b) Find the directional derivative of \vec{v}^2 , where

$$\overrightarrow{v} = xy^2\hat{i} + zy^2\hat{j} + xz^2\hat{k}$$

at the point (1,2,1) in the direction of the normal to the sphere $x^2 + y^2 + z^2 = 6$

at the point (2,1,1).

9. (a) Show that,

$$\vec{A} = (6xy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (3xz^2 - y)\hat{k}$$

is irrotational. Find a scalar function ϕ such that $\overrightarrow{A} = \overrightarrow{\nabla} \phi$.

(b) Verify Stokes' theorem for

$$\overrightarrow{F} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k},$$

where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. (5+6)