Bengal Engineering and Science University, Shibpur BE 3rd Semester(AE& ME) Final Examination 2013 Fundamentals of Solid Mechanics (AM308)

Time: 3hours Full Marks: 70

Answer any three questions from each half

First Half

1) a) A rigid bar AB is hinged at A and supported in a horizontal position by two identical vertical steel wires as shown in Fig. 1a. Find the tensile forces S_1 and S_2 induced in these wires by a vertical load P applied at B as shown.

Fig. 1a

b) A thin-walled cone (wall thickness t) is supported on a horizontal base as shown in Fig. 1b and subjected to internal gas pressure p. Neglecting the weight of the cone itself, find the principal membrane stresses σ_l and σ_2 at the level h below the apex. The apex angle of the cone is 2α as shown.

2. (a) Prove that T (Torque)= $G\theta J$

(b)A prismatic shaft of diameter d has built-in ends and is subjected to the action of externally applied twisting moments T_1 and T_2 as shown in Fig.2b. Find the internal torques T_a , T_b , T_c , in the three portions a, b, c of the shaft. The following numerical data

are given : a = 75 cm, b = 125 cm, c = 100 cm, $T_I = 12,000$ kg-cm, and $T_2 = 24,000$ kg-cm

Fig. 2b

3. a) A simply supported beam carries a linearly varying transverse load as shown in Fig.3a. The intensity of load at each end of the beam is w_0 . Develop general expressions for V_x and M_x at a cross-section distance x from support A. At what value of x will the bending moment be a maximum? What is the shear force at the middle cross-section of the beam?

- b) A simply supported beam having a span l = 3.6 m is to carry a uniformly distributed load of intensity w = 1,600 kg/m. The cross-section is to be rectangular with depth h and width b = h/2. If the allowable bending stress in tension or compression is $\sigma_w = 84$ kg/cm², what is the required depth h for the cross-section?
- 4.(a) Develop the general expression of shear stress in beam.
- (b)A box beam like that shown in Fig.4(b) is made of four 15 X2.5cm wood planks connected by screws, each of which can safely transmit a shear force of 125 kg. Calculate the minimum spacing of screws along the length of the beam if the maximum shear force V = 500 kg.

Fig. 4b

- 5.a) Find the magnitudes and directions of principal stresses either analytically or by constructing Mohr's circle for the element if $\sigma_x = -350 \text{ kg/cm}^2$, $\sigma_y = 210 \text{ kg/cm}^2$ and $\tau_{xy} = 210 \text{ kg/cm}^2$.
- (b) Develop the equation for a short column.

2nd Half

(Answer any three questions)

6. A steel shaft supported in bearings at A and B and carrying pulleys at C and D, is to transmit 100 hp at 500 rpm from the drive pulley D to the offtake pulley C as shown in Fig. 6. The following numerical data are given: $P_1 = 2P_2$, $Q_1 = 2Q_2$, $R_d = 15$ cm, $R_c = 20$ cm, l = 1.2m, a = 30 cm, and the working stress in shear is Tw = 420 kg/cm². Calculate the required diameter d of the shaft.

7 a) A simply supported prismatic beam AB carries a uniformly distributed load of intensity w over its span l as shown in Fig. 7a. Develop the equation of the elastic line and find the maximum deflection δ at the middle of the span.

b) A cantilever beam of length 1 carries two forces P at its third-points as shown in Fig. 7b. Using the moment area method, find the deflection δ_A at the free end A. The flexural rigidity of the beam is uniform throughout its length.

- 8.(a) Develop the expression of strain energy for bending ,torsion and tension.
 - (b) A solid circular rotor of weight W = 175 kg and radius r = 25 cm is supported by a bearing at the end of a simply supported beam as shown in Fig. 8b. Initially the rotor turns at a constant angular speed of 30 rpm. If the bearing suddenly freezes so that the rotor stops almost instantly, what dynamical reaction will be produced at A? Bearing and support at B are independent, and the beam has a rectangular cross-section 2.5 cm wide by 10 cm deep.

- 9. (a) What is theory of Castigliano, describe in detail.
- (b) Find the redundant moment M_A at the built-in end A of the statically indeterminate beam supported and loaded as shown in Fig. 9b. with the help of that theorem.

Fig.9b

- 10 (a) Develop the equation of buckling for a beam one end fixed another end free. What is the use of secant formula.
 - (b) Write down details about energy based failure theories.