BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR

B.E. / B. Arch, Part I 2nd Semester (CST, ETC, IT, MIN,MET) Final Examination, 2012

Subject: Basic Electrical Engineering

Time: 3 hours

Code No. EE 1201 Branch: Electrical Engg.

Full Marks: 70

- (i) Use separate answer script for each half
- (ii) The questions are of equal value
- (iii) Answer any six questions taking three from each half
- (iv) Two marks reserved for neatness in each half

1st Half

- 1. a) What is a 'node' and a 'branch' in an electrical network? Give examples.
 - b) State and briefly explain Thevenin's theorem. Find the current through the 20 ohm resistor in Fig. 1 using Thevenin's theorem. (All resistances are in ohms)

[2 + (4 + 5)]

Fig. 1

2.a) Find branch currents I₁ and I₂ (Fig. 2) using Maxwell's Mesh current method.

Fig. 3

- 3. a) Define the following quantities in a magnetic circuit and mention their units:
- i) Magnetic Field Intensity ii) Reluctance iii) Flux Density
- b) An iron ring (Fig. 4) has a cross-sectional area of 3 sq. cm and a mean diameter of 25 cm. An air gap of 0.4 mm has been made by a cut across the section of the ring. The ring is wound with a coil of 200 turns through which a direct current of 2 A is passed. If the total magnetic flux is 0.21 mWb, find the relative permeability of iron assuming no leakage.

Fig. 4

- 4. a) Deduce the expression for the electromagnetic torque developed in a P-pole d.c. motor.
- b) A 4-pole d.c. generator, with 400 armature conductors, has a useful flux of 0.04 Wb/pole. What is the e.m.f. generated if it is <u>wave wound</u> and the speed is 1200 r.p.m.? What must be the speed to generate the same e.m.f. if the machine is <u>lap</u> wound? [5+6]
- 5. a) Classify indicating instruments. What are the different torques acting in an indicating instrument?
- b) Briefly describe the operating principle of a Moving Iron instrument with a schematic diagram.

 [6+5]

SECOND HALF

- 6. (a) An alternating current wave is expressed as $i(t) = 141.4 \times \sin(314 \times t + 10^0)$. Determine its (i) RMS value (ii) average value and (iii) phase angle. Derive the necessary equations.
 - (b) Calculate the form factor and crest factor of a sinusoidal voltage waveform.
 - (c) For the voltage waveforms $v_1(t) = 100 \times \sin(314 \times t + \frac{\pi}{2})$ and $v_2(t) = 200 \times \sin(314 \times t + \frac{\pi}{4})$, draw the phasor diagram of the two voltages. [5+4+2=11]
- 7. (a) In connection with a resonant R-L-C circuit explain the following terms:
 - (i) resonant frequency (ii) half power frequencies
 - (iii) band width (iv) quality factor
 - (b) A coil of resistance 2 Ω and inductance 0.01 H is connected in series with a capacitor across a 200V, 25 Hz single phase a.c. supply. Find the value of the capacitance of the capacitor for which maximum current will flow through the circuit and the maximum current. [6 + 5 = 11]
- 8. (a) Show that for a star connected system, line voltage is $\sqrt{3}$ times the phase voltage.
 - (b) A balanced wye-connected load having 8 Ω resistance in series with 6 Ω inductive reactance in each phase is supplied through lines each having 1 Ω resistance and 2 Ω inductive reactance. If the sending-end voltage between lines is 250 volts, what will be the voltage between lines at the load?
- 9. (a) Define voltage regulation of a transformer. Develop an expression for calculating the voltage regulation of a two winding transformer under (i) lagging p.f. (ii) unity p.f. and (iii) leading p.f.
 - (b) A 40 kVA, 2500/500 V single phase transformer has the following parameters: $R_1 = 8 \Omega$, $R_2 = 0.5 \Omega$, $X_1 = 20 \Omega$, $X_2 = 0.8 \Omega$. Find the voltage regulation and the secondary terminal voltage at full load for a p.f. of 0.8 lagging. The primary voltage is held constant at 2500 V. [6 + 5 = 11]
- 10. a) Analytically justify how a rotating field is created in the air gap of a three phase induction motor when a balanced three phase ac supply is applied at the stator terminals.
 - b) Draw the torque-slip characteristics of a three phase inductor motor. What is the effect of variation of rotor resistance on this?
 - c) A 3-phase, 6-pole, 50 Hz Induction motor has a slip of 1% at no load and 3% at full load. Calculate (i) synchronous speed (ii) no load speed in r.p.m (iii) full load speed in r.p.m (iv) frequency of rotor current at full load. [3+3+5=11]