M. E. First Semester Examination 2011

Subject: Theory of Mechanical Vibration (ME-913)

Duration: 3 hours F. M. 70

Answer question No. 1 and any three from the rest

- 1. Consider the system illustrated in Fig. 1. The slender bar may be assumed rigid.
 - (a) Write the equations of motion of the system using the Euler-Lagrange formulation.
 - (b) Determine the natural frequencies and mode shapes of the system.
 - (c) Graphically illustrate the mode shapes showing the locations of the nodes.

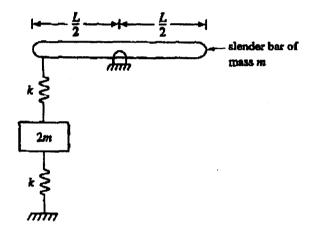
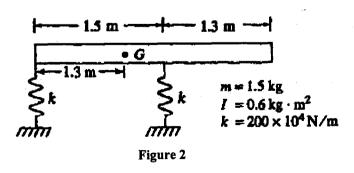


Figure 1

(5+8+3=16)

2. Determine the steady state amplitude of vibration of the mass centre of the rigid bar shown in Fig. 2 when its right end is subject to a dynamic moment $M = 4000 \sin(150t)$ N-m.



(18)

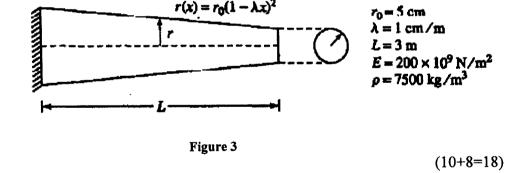
3. Write the appropriate boundary conditions and hence obtain the frequency equation for the transverse vibration of a cantilever beam with the free end supported on a linear spring.

(18)

4. (a) Obtain a two degrees-of-freedom lumped parameter model for the axial vibration of the tapered bar with circular cross-section shown in Fig. 3 using Assumed Mode Method (AMM). Consider the following trial functions:

$$\phi_n(x) = \sin\left[\frac{(2n-1)\pi x}{2L}\right], \quad n = 1, 2$$

(b) Estimate the natural frequencies and the corresponding mode shapes for the numerical values supplied in the figure.



- 5. A simply supported beam of length L and flexural rigidity EI is subject to a purely harmonic load $F(t) = F_0 \sin(\omega t)$ at the quarter span.
 - (a) Write the partial differential equation describing the transverse vibration of the beam.
 - (b) Obtain the modal equations.
 - (c) State with physical reasoning whether all modes of vibration will be excited or not.

(5+10+3=18)