BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR M.E. (Mech) 1st Semester Final Examination, 2011

ADVANCED ENGINEERING THERMODYNAMICS (ME-906)

Branch: Mechanical Engineering

Time: 3 Hrs.

Full Marks: 70

Answer any five questions.

Marks are indicated at the right hand margin for each question.

1. (a) A reversible heat engine in a satellite operates between a hot reservoir at temperature T_1 and a radiating panel at T_2 . Radiation from the panel is proportional to its area and to T_2^4 . For a given work output and value of T_1 show that the area of the panel will be minimum when $\frac{T_2}{T_1} = 0.75$.

Determine the minimum area of the panel for an output of 1 kW if the constant of proportionality is $5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$ and T_1 is 1000 K. (7)

(b) A body of constant heat capacity C_p and at a temperature T_i is put in contact with a reservoir at a higher temperature T_f . The pressure remains constant while the body comes to equilibrium with the reservoir. Show that the entropy change of the universe

is equal to
$$C_p \left[\frac{T_i - T_f}{T_f} - \ln \left(1 + \frac{T_i - T_f}{T_f} \right) \right]$$
.

Also prove that this entropy change is positive.

Given
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \cdot upto \alpha$$
 for x<1 (7)

- 2. (a) Calculate the decrease in available energy when 25 kg of water at 95° C is mixed with 35 kg of water at 35° C, the pressure being taken as constant and the temperature of the surrounding being 15° C. Take c_p of water = 4.2 kJ/kg K.
 - (b) A hot gas of mass m_g and specific heat c_{pg} is available at temperature T. If the environmental temperature is T_0 , show that the exergy or available energy of the gas is given by

$$AE = m_g c_{pg} \left[(T - T_0) - T_0 \ln \frac{T}{T_0} \right]$$
 (7)

- 3. (a) What do you mean by virial co-efficient type of equation of state? Express van der Waals equation of state in virial form. How Boyle temperature can be determined from the above equation?
 - (b) Show that the Gibbs function of a mixture of ideal gases at temperature T and Pressure P is given by $G = \overline{R}T \sum n_k (\phi_k + \ln P + \ln x_k)$, where the symbols have their meanings. Also state the significance of Gibbs function.
- (a) Derive the following relations for the difference in heat capacities c_p and c_v of a substance:

$$c_p - c_v = -\left(\frac{\partial v}{\partial T}\right)_p^2 \left(\frac{\partial P}{\partial v}\right)_T = \frac{vT\beta^2}{\alpha}$$

where α and β are isothermal compressibility and volume expansivity respectively. The other symbols have their usual meanings

What conclusions can be drawn from the above relations? Also show that for a perfect gas the above expression reduces to $c_p - c_v = R$. (9)

- (b) Determine the difference between c_p and c_v for water at 300 K for which coefficient of volume expansion $\beta = 2 \times 10^{-4} \text{ K}^{-1}$, isothermal compressibility $\alpha =$ 4.85×10^{-4} MPa⁻¹ and specific volume v = 0.001003 m³/kg. (5)
- 5. (a) What do you mean by degree of reaction of a chemical reaction? State the importance of van't Hoff equation in reactive system. If K₁ and K₂ be the equilibrium constants at temperatures T₁ and T₂ respectively, then using van't Hoff equation show that the heat of reaction is given by

$$\Delta H = 19.148 \frac{T_1 T_2}{T_1 - T_2} \log \frac{K_1}{K_2} \text{ kJ/kg mol}$$
 (8)

Starting with n_0 moles of water vapour which dissociates according to the equation $H_2O \Leftrightarrow H_2 + \frac{1}{2}O_2$, show that at equilibrium

$$K = \frac{\varepsilon_e^{3/2}}{\left(2 + \varepsilon_e\right)^{1/2} \left(1 - \varepsilon_e\right)} \cdot p^{1/2} \tag{6}$$

- 6. Write short notes (any three):
 - $(14/3 \times 3 = 14)$
 - Helmholtz function and Gibbs function (a)
 - Significance of Maxwell's Equations in Thermodynamics (b)
 - (c) Clausius- Clapeyron Equation
 - (d) Second Law Efficiency