BENGAL ENGINEERING AND SCIENCE UNIVERISTY, SHIBPUR M. E (ICE) 2nd SEMESTER SUPPLEMENTARY EXAMINATIONS 2011 Soft Computing Techniques (ICE - 1004)

Full Marks: 100 Duration: 3 Hours

Answer any five questions by taking at least one from each group

Group - A

Q.1 (6+4+10)

a) Describe the McCulloh-Pitts model of an artificial neuron.

- b) Explain the competitive learning mechanism using artificial neural network model.
- c) A neuron j receives inputs from four other neurons whose activity levels are 20, -10, 2 and 4. The respective synaptic weights of neuron j are 0.8, 0.2, -1.0 and -0.9. Calculate the output of neuron j for the following two situations:
 - i) The activation function of the neuron is piecewise linear function.
- ii) The Neuron using the Sigmoid function as an activation function. Consider slope parameter a=1.

Assume that the bias applied to the neuron is zero.

Q.2 (6+9+5)

- a) Describe memory-based learning mechanism for artificial neural network model.
- b) Briefly explain about the different learning paradigms: Supervised, unsupervised and Reinforcement
- c) Use least mean square (LMS) algorithm to obtain the formula for updating the weights of the neuron using gradient descent method.

Q.3 (10+4+6)

a) Try a training pass for the following multi-layer feedforward network using back-propagation learning algorithm. Learning rate parameter $\eta=1$. Also assume the activation function for each neuron is the sigmoid function. Assume the desired response for the applied pattern is 0.5.

- b) Obtain an associative memory model using artificial neuron.
- c) How is the memory matrix estimated in terms of the correlation matrix memory in an associative memory model?

Group - B

Q.4 (4+3+8+5)

- a) Write the basic steps of Genetic Algorithm.
- b) For which types of problem, value encoding technique is the best method to use. Explain with example.
- c) Consider seven chromosomes with the following fitness values: 5, 15, 30, 45, 55, 70 and 100.

- Use the roulette wheel selection method to calculate the expected number of copies of each chromosome in the mating pool if a constant population size, n=7, is maintained.
- ii) Repeat part (i) but use the selection method as rank selection procedure.
- d) Which of the above two selection methods is better and why?

Q.5

(8+5+5+2)

- a) Describe with examples the different types of crossover operations during reproduction process?
- b) Is it possible to get a solution using GA for multi-objective optimization problems? If yes then show how it is possible and if it is not then why? Explain.
- c) Suppose we are encoding a solution in GA using binary encoding mechanism and the objective function is a two variable function $f(x_1, x_2)$. For each of the variable four bits are used during encoding. Suppose after encoding the chromosome is 11010010 and the range of the variables are as follows: $x_1 \in [3,18]$ and $x_2 \in [-5, 10]$. If the objective function is $f(x_1, x_2) = x_1^2 + 4x_2$ then calculate the value of the objective function.
- d) Define generation gap.

Group - C

Q.6

(5+5+5+5)

- a) Write the resolution principle of a fuzzy set. Show with example how a fuzzy set can be represented using its ∞-cuts.
- b) Suppose we have a fuzzy set A. Then define the resolution principle of the set A. Give one example.
- c) Let $A=\{(3,0.5), (5,1), (7,0.6)\}$ and $B=\{(3,1), (5,0.6)\}$, Then obtain
 - i) E(A,B), equality of fuzzy set A and B.
 - ii) S(A,B), subset hood of fuzzy set A and B.
- e) Suppose f is a function mapping from universe of discourse $U=\{-2, -1, 0, 1, 2\}$ and $y=f(x)=x^2$. Let A be the fuzzy set defined on U, such that A=0.5/-1+0.8/0+1.0/1+0.4/2. Use extension principle to derive the fuzzy set B having membership function y=f(x).

Q.7

(6+6+8)

- a) What is the necessity of composition of a relation? What are the various types of fuzzy composition techniques you know?
- b) Consider a universe of aircraft speed near the speed of sound as $X=\{0.72, 0.725, 0.725, 0.725, 0.775, 0.775, 0.78\}$ and a fuzzy set on this universe for the speed "near mach 0.75" = M where $M=\{0/0.72 + 0.8/0.725 + 1/0.75 + 0.8/0.775 + 0/0.78\}$. Define a universe of altitudes as $Y=\{21, 22, 23, 24, 25, 26, 27\}$ in k-feet and a fuzzy set on this universe for the altitude fuzzy set "approximately 24000 feet" = N where $N=\{0/21k + 0.2/22k + 0.7/23k + 1/24k + 0.7/25k + 0.2/26k + 0/27k\}$.
 - i) Determine R between M and N.
 - ii) For another aircraft speed say M_I in the region of mach 0.75 where $M_I = \{0/0.72 + 0.8/0.725 + 1/0.75 + 0.6/0.775 + 0/0.78\}$, find the $S = M_I \circ R$. Symbols are in usual meaning.
- c) Define ∞-composition of two fuzzy sets and ∞-composition of a fuzzy relation and a fuzzy set.

Consider a fuzzy system whose input is the fuzzy set A and the output is the fuzzy set B. Fuzzy sets A and B as follows

A =
$$0.2/x_1 + 0.8/x_2 + 1/x_3$$

And B = $0.5/y_1 + 0.8/y_2 + 0.6/y_3$

Determine R such that $A \circ R = B$.

Q.8

(5+5+10)

- a) Describe the basic components of a fuzzy logic system?
- b) Write two different fuzzy implication rules which are used mostly for the fuzzy logic system implementation.
- c) Use Center of gravity (COG) method to obtain defuzzified value for the two overlapped fuzzy sets A and B represented in graphical form.

