Bengal Engineering and Science University, Shibpur. First Semester Master of Engineering Examination - 2011 Theory of Elasticity and Plasticity (AM – 903)

Full marks: 70 Time: 3 hours

Answer any five questions.

All questions carry equal marks

- 1(a) Starting from fundamentals, deduce expressions for strain components ε_x , ε_y , γ_{xy} in terms of the displacements u, v at any point of a 2 D stressed body. Draw neat explanatory sketches.
 - (b) Show that the compatibility condition for 2D problems in terms of stress components, in absence of any body force, can be expressed as

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left(\sigma_x + \sigma_y\right) = 0$$

(c) Using the stress-strain relationship and the equations of equilibrium, show that in absence of body forces, the displacements in problems of plane stress must satisfy

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{1+v}{1-v} \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) = 0$$

and a companion equation of a similar form.

- 2(a) Explain what is a stress function. Bring out its importance in solving elasticity problems.
 - (b) A cantilever beam of length I, depth 2c and unit thickness is loaded by a downwards concentrated force P at the free end. Using appropriate stress functions, derive expressions for stresses at any point (x,y) and compare the solution with those obtained by the elementary theory of strength of materials.
- 3(a) Draw a 3 D square element with right handed system of coordinate axes and show all normal and shear stresses using conventional nomenclature.
 - (b) Prove the compatibility equations in polar coordinates in the form $\begin{pmatrix} 3^2 & 1 & 3 & 1 & 3^2 \\ 1 & 3 & 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 3^2 & 1 & 3 & 1 & 3^2 \\ 1 & 3 & 1 & 3 & 2 \end{pmatrix}$

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)\left(\frac{\partial^2\phi}{\partial r^2} + \frac{1}{r}\frac{\partial\phi}{\partial r} + \frac{1}{r^2}\frac{\partial^2\phi}{\partial \theta^2}\right) = 0$$

4(a) Obtain the equilibrium equations in polar coordinate system in the following form

$$\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{\partial_r - \partial_{\theta}}{r} + R = 0$$

$$\frac{1}{r} \frac{\partial \sigma_{\theta}}{\partial \theta} + \frac{\partial \tau_{r\theta}}{\partial r} + \frac{2\tau_{r\theta}}{r} = 0$$

- (b) A cylindrical vessel of internal and external radii a and b respectively is subjected to internal and external pressures p_i and p_o . Work out expressions for radial and circumferential stresses σ_r and σ_θ . If the cylinder is subjected to internal pressure only, what are the values of the maximum radial and circumferential stresses and where do they occur?
- 5(a) A concentrated force P is applied on a straight boundary of an infinitely large horizontal plate. P represents load per unit thickness and the distribution of the load along the thickness is uniform. Find what stress components σ_x , σ_y , τ_{xy} does it produce at a distance r from the point of application of the load and at an angle θ with the vertical through the point of application of the load.
 - (b) A circular disc of diameter d is subjected to two opposite compressive forces P along the vertical diameter. Find the expression for σ_y at any point on the horizontal diameter and hence find the maximum value of the stress with its location.
- 6(a) Explain with illustrations what are meant by plane stress and plane strain problems. Give explanatory sketches whenever necessary.
 - (b) A small circular hole of radius a is located in the middle of a plate of small thickness and large width, the plate being subjected to a uniform tension in the longitudinal direction. Show that the maximum tensile stress occurring at the periphery of the hole at points located at the ends of a diameter perpendicular to the applied stress is three times the uniform stress applied.