BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR M. Sc. (APPLIED CHEMISTRY) 3rd SEMESTER EXAMINATIONS, 2011

Applications of Spectroscopy and Solid State Chemistry (PGC-304)

Full Marks: 100 Time: 4 hrs

> Use separate answer script for each group. Answer any FIVE questions from each group.

Group A

(a) Explain how could you use IR spectroscopy to distinguish the following pair of compounds?

(ii) Me—
$$\bigcirc$$
 = CO₂Me and Me = \bigcirc -OCOMe

- (b) Calculate the three J values that contribute to the following ddd splitting (doublet of doublet of doublet) which shows 8 lines. The position of each of the lines in Hz is given below:
- 1611.27, 1606.90, 1603.06, 1600.78, 1598.64, 1596.60, 1593.25, 1589.11
- (c) Determine a unique structure consistent with the following proton NMR data.
- ¹H NMR (δ): 5.39 (s, 1H), 5.29 (s, 1H), 2.87 (s, 1H), 1.90 (s, 3H).

In addition to the PMR, here is some other useful information: Molecular weight is 66;

IR (cm⁻¹): 3275 (m), 3030 (m), 2900 (s), 2150 (m), 1655 (w)

¹C NMR (δ): 126.0, 123.3, 84.9, 76.1, 23.2

2. (a) Discuss with an example how spin decoupling technique (double resonance) can be used for

- simplification of complex proton NMR.
 - (b) With the following spectral data suggest a suitable structure of the compound. Give reasons in favour of your answer.

MS (m/z): 134 (M⁺, 15), 105 (100), 77 (40).

IR (cm⁻¹): 1680 (significant peak);

¹H NMR (δ): 9.58 (d, 1H, J = 8 Hz), 7.46 (d, 2H, J = 7.5 Hz), 7.38 (d, 1H, J = 16 Hz),

$$6.68$$
 (d, $2H$, $J = 7.5$ Hz), 6.54 (d, $1H$, $J = 16$ Hz), 3.00 (s, $6H$);

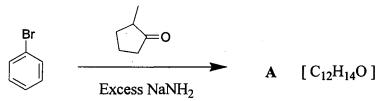
¹³C NMR: δ 207, 159, 130, 126, 114, 55, 50, 29.

(i) CH₃CH₂CH₂CO₂CH₂CH₃ and (ii)

(c) Write the mass fragmentation patterns of the following compounds:

$$\sim$$
CO₂

3+3+4


3. (a) Predict the approximate chemical shifts, multiplicities and J values for the absorptions in the proton NMR spectrum of the following compounds:

- (b) Distinguish the following pairs of compounds using ¹³C-NMR spectroscopy (proton decoupled):
 - (i) m-Xylene and o-Xylene; (ii) Ethyl 2-chlorobenzoate and Ethyl 2,6-dichlorobenzoate
- (c) Deduce the structure of the following compound having molecular weight 113, with the help of following spectral data:

IR (cm⁻¹): 2960 (m), 2260 (m), 1747 (s), 1200 (s); ¹H NMR (δ): 4.3 (q, 2H), 3.5 (s, 2H), 1.3 (t, 3H); ¹³C NMR (δ): 163, 113, 63, 25, 14.

4+2+4

4. (a) Determine the structure of A with the help of following spectral data and write a suitable mechanism for transformation to A.

IR (cm⁻¹): 3060, 2920, 1675, 1600;

¹H NMR (δ): 7.50 (d, 1H, J = 7.5 Hz), 7.43 (ddd, 1H, J = 7.5, 7.5, 1.5 Hz), 7.22-7.55 (m, 2H), 3.07 (m, 1H), 2.5-2.7 (m, 2H), 1.8-2.0 (m, 2H), 1.4-1.6 (m, 2H), 1.39 (d, 3H, J = 6.9 Hz);

¹³C NMR (δ): 208.1, 143.0, 139.3, 131.8, 127.7, 126.3, 125.1, 41.2, 34.4, 34.2, 20.4, 19.3.

- (b) The C-N stretching frequency in metal complexes is generally higher than the value of free CN ion while the opposite holds true for the carbonyl complexes explain.
- (c) Plot a graph for the variation of polarizability α with displacement coordinate x during the normal mode in CO_2 molecule and discuss how your conclusion supports the mutual exclusion principle.

5+2+3

5. (a) Account for the following trend in IR frequencies

[Cr(CN)₅(NO)]⁴· $\gamma_{(NO)} = 1515 \text{ cm}^{-1}$ · [Mn(CN)₅(NO)]³· $\gamma_{(NO)} = 1725 \text{ cm}^{-1}$ [Fe(CN)₅(NO)]²· $\gamma_{(NO)} = 1939 \text{ cm}^{-1}$

- (b) A molecule of formula $Cr(CO)_2(CN)_2Br_2$ has been synthesized. In the IR spectrum, it has two bands attributable to C-O stretching, but only one band attributable to C-N stretching. What is the most likely structure of this molecule?
- (c) Account for the observation that $[Co(CO)_3(PPh_3)_2]^+$ has only a single carbonyl stretching frequency.

4+3+3

6. (a) How many peaks would you expect for pyrazine radical anion with Na⁺ as counter-ion in EPR spectrum? Also write down the appropriate spin Hamiltonian. (${}^{1}H$, I = 1/2; ${}^{14}N$, I = 1; ${}^{23}Na$, I = 3/2) (b) In the complex $[Fe(H_2O)_4(NO)_2]^{2+}$, there are two equivalent ¹⁴N atoms. Predict the number of EPR lines the solution EPR spectrum will exhibit under situation (a) 57 Fe and 14 N (a) 56 Fe and 15 N and (a) 56 Fe and 14 N. (56 Fe, I = 0; 57 Fe, I = 1/2; 14 N, I = 1; 15 N, I = 1/2)

Group B

4+(2+2+2)

4+3+3

(1+5)+4

7. Write short notes on following structures: (i) Spinel (ii) Wurzite (iii) Sphalerite

12. Write notes on:

- 8. (a) Show the radius-ratios for tetrahedral and octahedral are 0.225 and 0.414, respectively. (b) Draw the Bravais lattices of the following structures and mention their essential symmetry with
- unit cell specification: (i) body-centred and (ii) simple tetragonal (3+3)+(2+2)
- 9. (a) What are 'Stacking faults'? (b) Elaborate how 'Screw Dislocations' are generated.
- (3 + 7)10. (a) Which is faster, dehydration of copper sulfate or dehydration of chrome alum and why?
- (b) Discuss Enantiotropy and Monotropy. $(1\frac{1}{2} + 4 + 4\frac{1}{2})$ (c) Write a note on Polytypism.
- 11. (a) What is Moseley's law? With a schematic design of a filament X-ray tube describe how X-rays are generated from a Cu target. (b) Illustrate the term 'Systematic Absences'.
- (i) Type I Superconductors (ii) Persistent current & Flux Quantization (iii) Josephson Effect. $(3\frac{1}{2} + 3 + 3\frac{1}{2})$