M.E. (Civil) 1st Semester Examination, 2011

Engineering Elasticity and Plasticity (CE-902)

Time: 3 hours

Full Marks: 70

Answer **Question No. 1** and any **FOUR** from the rest.

- 1. Write short notes on the following: (any four)
 - i) Stress deviator
 - ii) Stress invariants
 - iii)Lame's coefficient
 - iv) Plane strain problem
 - v) Airy's stress function
- 2. a) What do you mean by a yield criterion? Explain Trescas' and Von Mises' yield criteria. Also, give the graphical representations.
 - b) The state of stress at a point is given by

$$\sigma_{ij} = \begin{bmatrix} 30 & 45 & 60 \\ 45 & 20 & 50 \\ 60 & 50 & 10 \end{bmatrix} \text{MPa}$$

Determine the stress invariants I_1 , J_2 , J_3 and θ

- 3. What do you mean by 'equations of plasticity'? Explain Mises equations of plasticity and Prandtl-Rouss equations of plasticity, clearly stating the assumptions.
- 4. Derive an expression relating torsion and twist in a circular shaft stating the assumptions and explain what you mean by torsion constant. Hence, derive expressions for shear stress for a circular shaft subjected to torsion T.
- 5. What is meant by plane stress problem? Show that for plane stress, the compatibility equation may be expressed as

$$\nabla^2 (\sigma_x + \sigma_y) = (1 + \nu) \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} \right)$$
 where X and Y are the body forces.

- 6. a) Define Kronecker Delta and permutation symbol.
 - b)Distinguish between covariant tensor and contravariant tensor.
 - c) Explain principal stress using tensor notation.
- 7. a) The given state of stress is: $\sigma_x = 12$, $\sigma_y = 8.96$, $\sigma_z = 4.3$, $\tau_{xy} = 4.2$, $\tau_{yz} = 5.25$, $\tau_{zx} = 0.8$. Resolve the state of stress into hydrostatic and pure shear case. Calculate normal and shear stress for hydrostatic and pure shear case separately.
 - b) For the following plane strain distribution, verify whether the compatibility condition is satisfied

$$\varepsilon_x = 3x^2y$$
 $\varepsilon_y = 4y^2x + 10^{-2}$ $\gamma_{xy} = 2xy + 2x^3 \sigma_y$