BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR

M. E. 1st Semester Final Examination, 2013

Discrete Structures (M-902)

Full Marks 70

Branch-ETC

Time: 3 hours

Use separate answerscripts for each group.

GROUP A

Answer any two questions in this group.

Credit will be given for answers which are brief and to the point. Marks might be deducted for longwinded answers and irrelevant details.

- 1. (a) State and prove Lagrange's theorem.
 - (b) Define homomorphism and kernel of a homomorphism. Show that the kernel of a homomorphism is a subgroup of the group on which the homomorphism is defined. Is it a normal subgroup? Justify you answer.

(8+6)

- 2. (a) Let H be a normal subgroup of a group G. Denote the set of all cosets $\{aH \mid a \in G\}$ by G/H and define * on G/H by (aH)*(bH) = abH for all aH, $bH \in G/H$. Then prove that (G/H, *) is a group.
 - (b) Give an example to of an infinite group G having an infinite normal subgroup H such that the quotient group G/H is finite.

(8+6)

- 3. (a) Prove that any field is an integral domain.
 - (b) Is the converse true? Justify your answer with a suitable example.

(c) Can you suggest an additional condition to be imposed on the integral domain so that the converse holds? Present your proposal in the form of a theorem. Provide a rigorous proof of this theorem.

(3+3+8)

Group B

Answer any THREE questions

- 4. a) Define poset. Show that the set of all rational numbers with usual order '≤' is a poset. Is it totally ordered?
 - b) Let N be the set of all positive integers, \wedge and \vee are defined as $a \wedge b = HCF$ of a and

b, $a \lor b = LCM$ of a and b. Prove that (N, \land, \lor) is a lattice.

c) Define a distributive lattice. Show that in a distributive lattice (L, \land, \lor) , $a \land b = a \land c$ and $a \lor b = a \lor c \Rightarrow b = c$.

4+5+5

- 5. a) Define a Boolean algebra. Prove that $(P(S), \cup, \cap)$ is a Boolean algebra.
 - b) Define a Boolean function. Find the conjugative normal form for the function f = xyz + x'yz + xy'z' + x'yz'.
 - c) Using truth table show that

$$xy'+xy + x'y = x + y$$
.
5+5+4

6. a) Simplify the circuit

b) A committee consists of a chairman, president, secretary & treasurer. A motion passes

if and only if it receives majority of votes or the vote of the chairman plus one other

member. Each member presses a switch to indicate its approval of motion. Design a switching circuit in such a way that the current passes if and only if the motion is approved.

- c) A man observes the following rules during his meal.
 - i) If he takes coffee he does not drink milk.
 - ii) He takes biscuits only if he drinks milk.
 - iii) He does not take eggs unless he eats biscuits.

If it is known that he had coffee at certain meal can you say whether he had eggs in that meal.

4+5+5

7. a)Define a binary tree. Prove that the number of pendant vertices in a binary tree is $\frac{n+1}{2}$,

where n is the number of vertices in the tree.

- b) Define a spanning tree. Show that every connected graph has at least one spanning tree.
 - c) Prove that the necessary condition for a simple connected graph to be planar is $e \le 3n 6$.

5+4+5

8. a) Find the spanning tree of the graph

Also determine the number of fundamental circuits.

b) By Prim's algorithm find a minimal (shortest) spanning tree in the following graph

and also find the corresponding minimum weight.

