BENGAL ENGINEERING AND SCIENCE UNIVERSITY, SHIBPUR

M.E. 1st Semester Final Examination, 2012 Discrete Structures (M-902)

Full Marks- 70 Time – 3 hours **Branch-ETC**

All questions carry equal marks.

Group A

Answer any TWO questions from this group.

- 1.a) Define a field and an integral domain. Prove that a field is an integral domain but not conversely.
 - b) State the pigeonhole principle and utilize it to prove that a <u>finite</u> integral domain is a field.

7 + 7

- 2.a) State and prove Lagrange's theorem in the context of groups.
 - b) Give an example to show that the index of H in G may not always be computed using the formula $\circ(G)/\circ(H)$. (Here G is a group and H is a subgroup of G.)

7+7

- 3.a) Given <u>any</u> positive integer n, show that there exists an abelian group of order n.
 - b) Consider the set $S=\mathbb{Q}-\{1\}$, where \mathbb{Q} is the set of rational numbers. Define, on this set, a binary operation * as follows: a*b=a+b-ab.

Prove that (S, *) is an abelian group. Explain why it is necessary to delete the element 1 from \mathbb{Q} in ordere to preserve the group structure.

7+7

Group B

Answer any THREE questions.

- 4 (a) Define partially ordered set. Illustrate with an example.
 - (b) Let S be a set and P(S) be its power set. Prove that P(S) is a lattice with respect to the operations \cap (intersection) and \cup (union).
 - (c) Prove that intersection of two sub lattices is a sub lattice. Give an example to show that union of two sub lattices may not be a sub lattice.

- 5 (a) Prove that a Boolean algebra (B, +, •) is a lattice with respect to the operations '+' and '•'.
 - (b) Prove that for every element 'a' in a Boolean algebra $(B, +, \bullet)$, a+a=a and $a \bullet a=a$.
 - (b) Express the following Boolean functions in its disjunctive normal form:
 - (i) (x+y)(x+y')(x'+y),
 - (ii)(xy'+xz)'+x'.

- 6 (a) Draw the switching circuit represented by the Boolean function xyz' + x'(y + z').
 - (b) A light in a room is to be controlled by three switches located at three entrances. Design a simple series-parallel switching circuit such that flicking any one of the switches will change the state of the light.

- (c) A guest come to a hotel and said I am very particular about my food. Please obey the following rules when serving meal:
- (i) At any meal when you do not serve bread you must serve ice-cream.
- (ii) If you serve both bread and ice-cream, you must not served pickles in that meal.
- (iii) If pickles are served or breads are not served, then ice-cream must not be served.

The manager tries to simplify these rules with Boolean algebra. What rule did he get?

2+6+6

- 7 (a) Define walks, paths and circuits in a graph.
 - (b) Prove that there exists no simple graph with five vertices having degree 4, 4, 4, 2, 2.
 - (c) Show that any connected graph with n vertices and (n-1) edges is a tree.
 - (d) Prove that for any connected planar graph with 'n' vertices, 'e' edges and 'f' regions, n-e+f=2.

3+4+3+4

8 (a) Find the spanning tree of the graph.

(b) By Prim's algorithm find a minimal (shortest) spanning tree in the following graph and find the corresponding minimum weight.

6+8