M.E. (ETC) 1st Semester Final Examination, 2012-2013 Digital Processing & Control of Signal (ETC- 908)

Full Marks: 70 Time: 3 hours

Use separate answer scripts for each half

FIRST HALF

Answer Q. No. 1 and any two from the rest

1. (a)

For each of the pairs of sequences in Figure 1a, use discrete convolution to find the response to the input x[n] of the linear time-invariant system with impulse response h[n].

Figure 1a

The input-output pair shown in Figure 1b-1 is given for a stable LTI system.

Figure 1b-1

Determine the response to the input $x_1[n]$ in Figure 1b-2

Flaure 1b-2

2. Determine the inverse Z-transform for the following:

$$X(z) = \frac{3}{z - \frac{1}{4} - \frac{1}{8}z^{-1}}, \quad x[n] \text{ stable}$$

$$X(z) = \frac{3z^{-3}}{\left(1 - \frac{1}{4}z^{-1}\right)^2}, \quad x[n] \text{ left sided}$$

$$X(z) = e^{z^{-1}}$$

10

10

15

3. Describe the decimation in time FFT algorithm, drawing the signal flow graph for 16 point DFT in various stages.

4. Write notes on:

(a) Structures for linear-phase FIR system

(b) The JPEG standard

SECOND HALF

Answer Q. No. 5 and any two from the rest

- 5. Consider a causal LTI system with system function $H(z) = \frac{1-a^{-1}z^{-1}}{1-az^{-1}}$, where 'a' is real.
 - (a) Write the difference equation that relates the input and output of this system.
 - (b) For what range of values of 'a' is this system stable?
 - (c) For a=0.5, plot the pole-zero diagram and shade the ROC in z-plane.
 - (d) Find the impulse response for this system.
 - (e) Show that this system is an all-pass system. Also specify the value of the constant.

Determine whether or not the discrete data system identified by the following characteristic equation is stable.

$$z^3 + 3.3z^2 + 4z + 0.8 = 0$$

10+5

6. Examine the influence of zero-order hold on the continuous output responses y(t) in Fig. 5 (a) and Fig. 5 (b) respectively by letting $G_1(s) = \frac{1 - e^{-s\Delta t}}{s}$ and $G_2(s) = \frac{k}{st+1}$. The input signal x(t) is a unit step input.

7. Find out the expression for delayed z-transform of the function $f(t) = e^{-at}u(t)$. Prove that modified z-transform of any function is not equal to its z-transform, unless the function is zero at time t=0.

5+5

8. Consider a system consisting of two sensors, each making a single measurement of an unknown constant x. Each measurement is noisy and may be modeled as follows:

$$y(1) = x + v(1)$$
$$y(2) = x + v(2)$$

where v(1) and v(2) are zero-mean uncorrelated random variables with variances σ_1^2 and σ_2^2 , respectively.

(a) In the absence of any other information, the best linear estimate of x of the form $x' = k_1 y(1) + k_2 y(2)$ is to be found. Find the values for k_1 and k_2 that produce an unbiased estimate of x that minimizes the mean square error.

(b) Repeat part (a) for the case where the measurement errors are correlated by $E\{v(1)v(2)\} = \rho \sigma_1 \sigma_2$, where ρ is the correlation coefficient.