Indian Institute of Engineering Science and Technology, Shibpur M.E. (ETC) 2nd Semester Final Examination, May 2014

ANTENNA ENGINEERING FOR MODERN COMMUNICATION (ETC - 1034)

Full Marks - 70

Time -- 3 Hrs.

All questions carry equal marks Answer any FIVE questions

- 1.(a) . Deduce the expressions of radiated field components of a half wave dipole antenna assuming sinusoidal current distribution and calculate the radiation resistance of the said antenna...
 - (b) . A magnetic field strength of 5μ A/m is required at a point on $\theta=\pi/2$, which is 2 Km from an antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is
 - (i). A hertzian dipole of length $\lambda/25$?
 - (ii). A half wave dipole?
 - (iii). A quarter wave monopole?
 - (iv) A 10 turn loop antenna of radius $\lambda/20$?
 - (c) . The radiation intensity of a certain antenna is

$$U(\theta, \phi) = 2\sin\theta \sin^3 \phi$$
; $0 \le \theta \le \pi$, $0 \le \phi \le \pi$
= 0 : elsewhere.

Determine the directivity of the antenna.

(8+4+2)

- Define antenna polarization. A right circularly polarized antenna has Electric field of $(a\theta ja\phi)/\sqrt{2}$. Calculate the polarization efficiency of the antenna if the incident electric field is right circularly polarized and the linearly polarized in the θ direction. What is meant by Isotropic radiator and omni-directional radiation? (4+6+4)
- 3. (a) Derive the resultant field for a two element dipole array placed along x axis. Calculate the array factor for an N element array and sketch the normalized field pattern taking $\alpha = 0$, N = 2, d = $\lambda/2$ where symbols have their usual significance.
 - (b) What is steering vector? Discuss briefly the architecture of a Smart Antenna System. (3+5+3+3)

- 4. (a) Analyze Rectangular Microstrip Patch Antenna by 'Transmission Line Model' with suitable illustration and mathematical interpretation in the light of fringing effects, effective length, resonant frequency, effective width and conductance.
- \ (b) Outline a design procedure for the said patch antenna based on (a) above.
 - (c) Design a microstrip antenna using a substrate (PTFE) with dielectric constant 2.55 and thickness 1.56 mm so as to resonate at 3.0 GHz.. (Consider loss tangent as 0.001)

 (10+2+2)
- 5. (a) Describe the radiation mechanism of a rectangular microstrip antenna using 'Cavity Model' clearly discussing field configurations(modes).
 - (b) How do you define 'Quality factor' of a microstrip antenna? How does it influence the bandwidth? (12+2)
- 6. (a) Briefly explain the near field and far field concept of antenna radiation and describe why far field measurements are preferred.
 - (b) Explain different techniques of Antenna Gain Measurement. (7+7)
- 7. (a) Write down the Finite Difference approximation of Laplace equation $(\nabla^2 \varphi = 0)$ in two dimensions. How do you solve the potential of a Node which is at the corner of dielectric inhomogenity?
 - (b) Analyze the transmission line using one dimensional FDTD method, assume TEM-wave propagation along the x-direction in the transmission line.
 - (c) Define Functional in Computational Electromagnetics? (7+5+2)
- 8. Write short notes on the following: (any two):
 - a) Small Loop Antenna
 - b) Surface-Wave and Leaky-Wave Antenna
 - c) Fractal Antennas
 - d) Anechoic Chamber and Absorbing Materials (7+7)
