Advanced Power System Analysis (EE-908)

Time: 3 hours Full Marks: 70

- (i) Answer any three questions from Group -A and any two from Group -B
- (ii) Marks are indicated in the margin
- (iii) The symbols are of usual meanings

GROUP - A

- 1.(a) What is primitive network? Draw the primitive network for a 1ϕ element in impedance form. Write its performance equation in matrix notation.
 - (b) The self and mutual pu reactances of the network elements are shown in Fig.1.

Fig.1: Problem 1(b)

The primitive admittance matrix of the network is

		1	2	3	4	5
[y] =	1	2.083	-0.417		-1.042	
	2	-0.417	2.083		0.208	
	3			2.000		
	4	-1.042	0.208		3.021	
	5					5.000

- (i) Form the bus incidence matrix and (ii) compute the bus admittance matrix of the network. Assume bus (1) as reference. (4+(4+6))
- 2.(a) Derive the equations for formation of bus impedance matrix when the partial network is connected to a mutually coupled link in a 1ϕ network.
 - (b) The zero sequence bus impedance matrix of the network of Fig.2 is formed by step-by-step method. The first four elements in the sequence of $\underline{1}-\underline{2}-\underline{4}-\underline{5}$ are already connected to obtain

The zero sequence pu reactances and the reference node are shown in the diagram.

Fig.2: Problem 2(b)

Given the inversion of

2.5	0.6	0.9
0.6	1.0	0.0
0.9	0.0	1.5

is

0.625	-0.375	-0.375	
-0.375	1.225	0.225	
-0.375	0.225	0.892	

Modify $Z_{BUS}^{(0)}$ to connect the element <u>3</u> which is mutually coupled with elements <u>4</u> and <u>5</u>. Take bus (1) as the reference bus. (8+6)

- 3.(a) What is symmetrical component? Apply it to diagonalize the $3-\phi$ rotating elements into zero, positive and negative sequence impedances.
 - (b) Derive expressions for
 - (i) fault current and voltage at the faulted bus
 - (ii) fault voltages at other buses
 - (iii) fault current through an element

for three phase to ground fault in symmetrical components of a balanced $3-\phi$ network.

4. Write notes on the following:

(7+7)

- (a) Network graph
- (b) Short circuit program

GROUP - B

5. A fixed tap-setting transformer with an off-nominal turns ratio a: 1 and admittance y_{pq} is connected between bus nos. p and q of an existing n-bus system. Show that the following modifications are to be done so as to obtain the new bus admittance matrix Y_{BUS} .

(i)
$$Y_{pp}^{new} = Y_{pp}^{old} + y_{pq} / a^2$$

(ii)
$$Y_{qq}^{new} = Y_{qq}^{old} + y_{pq}$$

(iii)
$$Y_{pq}^{new} = Y_{qp}^{new} = -y_{pq}/a$$
 (14)

- 6. (i) A 20 bus, 30 line system has 16 load buses, and 3 voltage controlled buses. Calculate the following for this system and justify your result.
 - (a) Degree of sparsity of Bus Admittance matrix.
 - (b) No. of rows and columns of the Jacobian matrix (used in Newton Raphson Load Flow Study) (1+2)
 - (ii) In connection with Jacobian matrix derive mathematical expressions for H_{pp} , H_{pp} , L_{pp} , L_{pq} . (11)
- 7. (i) Explain how Fast Decoupled Load Flow method is made faster than Newton Raphson method. (4)
 - (ii) Derive two basic equations used in Fast Decoupled Load Flow method.